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Abstract

This paper is the first part of a two-part investigation of a novel approach to optimally control commercial building passive and active

thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control

scheme that combines features of model-based optimal control and model-free learning control. An experimental study was carried out to

analyze the performance of a hybrid controller installed in a full-scale laboratory facility. The first part presents an overview of the project with

an emphasis on the theoretical foundation. The motivation of the research will be introduced first, followed by a review of past work. A brief

introduction of the theory is provided including classic reinforcement learning and its variation, so-called simulated reinforcement learning,

which constitutes the basic architecture of the hybrid learning controller. A detailed discussion of the experimental results will be presented in

the companion paper.
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1. Introduction

1.1. Motivation

The advantages of shifting building cooling load by using

active and passive thermal storage capacity have been

realized for a long time. By definition, active building

thermal capacity refers to a thermal energy storage (TES)

system, which is either a chilled water or ice based system.

Passive building thermal storage capacity refers to the

building envelope, internal construction and furniture, which

affect the building cooling load. The motivation for this

study stems from a research project that investigates

predictive optimal control of active and passive building

thermal storage inventory. In this project, a model-based
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predictive optimal controller was developed in order to

evaluate the merits of controlling active and passive thermal

storage optimally in a continuous closed-loop fashion. The

first two phases of the study, numerical analysis and

experimentation, demonstrated that an optimal controller

can operate the building and cooling plant efficiently and

achieve significant cost savings. However, the model-based

predictive optimal control approach is strongly affected by

the quality of the model. Efforts to develop and maintain the

model can be very demanding, time-consuming, and costly.

To overcome these shortcomings, a new methodology,

reinforcement learning control, was introduced as the third

phase of the study to tackle this control problem in an adaptive

manner. Results of a numerical analysis and simulation study

show that although pure reinforcement learning can direct the

controller to approach a near-optimal control strategy, it

usually takes an unacceptably long time tomake the controller

‘‘learn’’. The slow nature of reinforcement learning makes it

almost impossible to implement such control algorithm

directly into any practical application.
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As a result, a hybrid control scheme has been proposed

that attempts to combine the positive features of both the

model-based and reinforcement learning approach. The

hybrid control approach is based on a variation of classic

reinforcement learning called simulated reinforcement

learning, which inherits the basic structure of reinforcement

learning. However, the controller is trained by a model in a

simulation environment before it is implemented in a real

control application. In order to validate the hybrid control

approach, experimentation was carried out in the same

laboratory facility as the model-based approach experiment.

This paper summarizes the findings of the study leading to

the development of the novel hybrid control approach and

presents selected experimental results. The investigation

shows that although the proposed hybrid control approach

functions as expected, it is affected by the training model

and other learning parameters.

1.2. Review of past work

Previous studies on building thermal mass utilization

demonstrate the potential of reducing peak cooling loads and

associated electrical demand. The results show that cost

savings vary widely among the published case studies [1–4].

In a simulation study presented by Braun [5], cost savings

for a design day varied from 0 to 35% depending on system

type and utility rate. Andresen and Brandemuehl [6] showed

energy and cost savings potential by precooling the building

structure, calling attention to the importance of the mass of

furnishings that significantly affects the precooling strategy.

In a review article on load control using building thermal

mass, Braun [7] concluded that the savings potential is very

sensitive to the utility rates, building and plant character-

istics, and weather conditions and occupancy schedule. The

greatest cost savings were realized for the case of heavy

construction, good part-load characteristics and low ambient

temperature that enabled free cooling during nighttime

ventilation.

Optimal control of TES has been investigated by several

researchers. To evaluate the theoretical potential of ice

storage systems in reducing operating costs, a detailed

analysis was performed by Henze et al. [8,9] using a

dynamic programming-based simulation environment.

Within this environment, a set of three conventional control

strategies was compared to optimal control, which in turn

served as a benchmark to determine how well conventional

controls harnessed the system’s cost saving potential. A

subsequent investigation phase presented in companion

papers by Henze et al. [10] and Henze and Krarti [11]

determined to what extent the performance merits of optimal

control are retained when the optimal controller is subjected

to uncertainty in the external variables influencing the

physical process, such as future weather variables and

cooling loads.

The project Predictive optimal control of active and

passive building thermal storage inventory, sponsored by the
U.S. Department of Energy, attempts to combine these

merits and mathematically analyze the optimization at the

same time. A simulation study was carried out to investigate

the combined usage of active and passive building thermal

storage inventory by Henze et al. [12]. The analysis showed

that when an optimal controller for combined utilization is

given perfect weather forecasts and when the building model

used in the model-based predictive control perfectly matches

the actual building, the utility cost savings are significantly

greater than either storage, but less than the sum of the

individual savings. In addition, the cooling-on-peak

electrical demand can be drastically reduced. Further

research by Henze et al. [13] also demonstrated that

prediction uncertainty in the required short-term weather

forecasts can affect the controller’s cost saving performance.

Liu and Henze [14] investigated the impact of five categories

of building modeling mismatch on the performance of

model-based predictive optimal control of combined

thermal storage using perfect prediction. The results showed

that a simplification or mismatch of the building geometry

and zoning only marginally affected the optimization

strategy. However, the mismatch of internal heat gain,

building construction and energy system efficiency can lead

to significant deviations in the optimization. Henze et al.

[15] demonstrated model-based predictive optimal control

of active and passive building thermal storage inventory in a

test facility in real time using time-of-use differentiated

electricity prices without demand charges. The experiment

essentially confirms the previous findings in the numerical

analysis of optimal control of building thermal storage.

However, the savings associated with passive building

thermal storage inventory proved to be small because the test

facility is not an ideal candidate for the investigated control

technology.

The learning control approach was considered when

dependence on model quality became evident in the model-

based approach. Earlier research by Henze and Dodier [16]

investigated learning control of a grid-independent photo-

voltaic system consisting of a collector, storage, and a load.

Better performance was found by applying reinforcement

learning to optimize the operation of the system. Henze and

Schoenmann [17] investigated the application of reinforce-

ment learning control to the optimization of a thermal

energy storage system. Although reinforcement learning

control proved sensitive to the selection of state variables,

level of discretization, and learning rate, the controller

effectively learned how to control thermal energy storage

and displayed good performance. The cost savings

compared favorably with conventional cool storage control

strategies, but did not reach the level of predictive optimal

control.

These studies encouraged the authors to investigate

reinforcement learning for optimal control of active and

passive building thermal storage inventory. In a follow-up

research study, a simulation environment was developed, in

which a supervisory controller was designed to control the
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Fig. 1. Controller structure.
thermal storage inventories of a commercial building model

based on a reinforcement learning algorithm. Liu and Henze

[18,19] demonstrated that the reinforcement learning

approach can find the optimal or a near-optimal control

policy without prior knowledge of the environment, but it

takes an unacceptably long time. Furthermore, the perfor-

mance of the controller was sensitive to many factors

including selection of the state-action space and learning

parameters. Implementation of such a controller with no

prior domain knowledge would not be practical in any real

building control application.

As a result, a hybrid control scheme is proposed that

combines the merits of the model-based approach and the

model-free learning approach. The hybrid approach is based

on a variation of the classic reinforcement learning approach

and is called simulated reinforcement learning. The

following sections describe the efforts made to develop

the hybrid learning controller. The methodology behind the

approach and an analysis of the hybrid control experimental

study are presented, and the performance of the controller is

compared with model-based optimal control and other

conventional control strategies.
2. Development of a hybrid control approach

2.1. Problem statement

Our problem can be formulated as a sequential decision-

making problem, in which an intelligent controller is

continuously facing a situation that requires it to select an

action a (a 2 A) when the condition of the environment is at

a specific state s (s 2 S), in order to maximize cumulative

rewards
P

rt given a time horizon T (t = 1, 2, . . ., T). The
strategy to select the certain action at a given state is called

policy p(s, a), and our goal is to find the optimal policy p*(s,

a) that leads the controller to select an appropriate action a in

any given state s to maximize the cumulative rewards.

Specifically, the desired controller tries to minimize a cost

function:

J ¼ Jðu�1; . . . ; u�l Þ ¼ min

�Xl

k¼0

rkPkDt

�
(1)

Eq. (1) describes a building HVAC controller that performs a

sequence of actions over a selected time horizon of l to

minimize the total cost at the end of period. In this equation,

rk is the price of electricity at time k. Pk is the total building

electricity consumption, which is either the sum of cooling

and non-cooling electrical loads, or the cooling-related load

only. Dt is the time interval. In our case, the actions are

specifically defined as the building global zone air tempera-

ture setpoint Tsp, the control variable that exploits the

passive thermal storage inventory, and a control command

for the active thermal storage system that is either charge (+)

or discharge (�) rate u. The dynamics of a simple ideal TES
model (without considering transmission heat losses) can be

expressed in the following equation:

xkþ1 ¼ xk þ uk
Dt

SCAP
(2)

where xk is the state-of-charge of the TES, and SCAP is the

TES capacity. Both the state-of-charge x and the control

variable u are subjected to time-dependent constraints:

xmin � x � xmax (3)

uk;min � uk � uk;max (4)

Fig. 1 depicts the overall structure of the controller. At the

beginning of each time interval, the controller will first sense

the current information of the building and plant, and then

carry out the optimization based on prediction and planning,

knowledge learned from the past, or a hybrid control algo-

rithm that combines both features. Once the optimal control

actions are found, the commands (including zone air tem-

perature setpoint Tsp and the TES charge or discharge rate u)

will be sent to the building automation system (BAS). As the

actions selected by the controller are executed by the

building and the plant, an operating cost will be generated

at the end of the time interval. This information will also be

fed back to the controller as the reward information of the

selected action. The goal of the controller is to develop a

strategy to find the optimal actions that minimize the

cumulative operating costs over the total time horizon.

2.2. Methodology

A sequential decision-making problem can be solved by

either planning or learning depending on the availability of

knowledge of the environment. In planning problems, we

assume that a complete model of the environment is

available in advance. The task of finding the optimal policy

is accomplished by a planner, and the optimal policy is then

executed by the agent. On the other hand, when the

environment is unknown or it is difficult to develop a



S. Liu, G.P. Henze / Energy and Buildings 38 (2006) 142–147 145

Fig. 2. Classification of sequential decision-making problems.
detailed model of the environment, the only way for the

agent to find the optimal policy is through interaction with

the environment including perception and action. This is the

so-called reinforcement learning problem.

Fig. 2 presents four categories of sequential decision-

making problem scenarios classified by Littman [20].

Besides the planning and reinforcement learning approaches

introduced above, there are two additional cases that

combine some characteristics of planning and learning.

Model-based reinforcement learning uses the experience to

generate a model, which serves as a planner to update the

policy for the agent. On the other hand, in simulated

reinforcement learning, a simulator is constructed first

without taking the actual response of the system into

consideration. The model can be developed, based on

previous knowledge, which emulates the environment and

generates the quasi-experience to train the learning

controller. Next, the controller is implemented into an

actual building application to direct the system by using the

trained knowledge. This is the basic framework for the

hybrid controller discussed in this paper.

2.2.1. Classic reinforcement learning

As mentioned earlier, the proposed hybrid learning

control scheme is based on a variation of the classic

reinforcement learning algorithm. It is necessary to

introduce briefly the background of reinforcement learning

before jumping into the discussion of the hybrid control

scenario.

Fig. 3 sketches the general layout of a typical

reinforcement learning problem. As depicted in Fig. 3, at

any moment t, the agent first senses the current condition of

the environment, which is represented as state St, and then

selects an action at. The action causes the environment to
Fig. 3. Schematic of the reinforcement learning problem.
change to a new state St+1. After the state transition, the

agent receives a reward rt. In a reinforcement learning

problem, an agent interacts with the external environment to

achieve a long-term goal, which is a measure of cumulative

rewards over a finite or infinite sequence of decisions.

Most reinforcement learning control problems adopt the

framework of a Markov decision process (MDP) that

exhibits theMarkov property [21]. A process is Markovian if

the next state of the environment depends and only depends

on the current state and current action to take. This property

does not mean that the historical states are not important,

only that all the historical information can be retained by the

current state. In this case, a transition probability function is

then introduced, defined as

pass0 ¼ Prðstþ1 ¼ s0jst ¼ s; at ¼ aÞ (5)

Similarly, the next reward is also defined as a function of

current state, current action, and next state:

Ra
ss0 ¼ Eðrtþ1jst ¼ s; at ¼ a; stþ1 ¼ s0Þ (6)

The policy is a mapping between the state space and the

action space. In MDP, we usually define this mapping as a

probability function p(s, a) of taking action awhen state is s.

Given a policy and a particular state, the value function is

defined as

VpðsÞ ¼ EpfRtjst ¼ sg ¼ Ep

�X1
k¼0

gkrtþkþ1jst ¼ s

�
(7)

where a discount factor g discounts future rewards. Simi-

larly, we define the value of taking action a in state s

according to a policy as

Qpðs; aÞ ¼ EpfRtjst ¼ s; at ¼ ag ¼ Ep

�X1
k¼0

gkrtþkþ1jst

¼ s; at ¼ a

�

(8)

An important issue in reinforcement learning is behavioral

variety, which is the trade-off between exploration and

exploitation. Exploration refers to the activity of evaluating

the value of available actions. Exploitation means utilizing

current knowledge of action values to maximize the return.

The agent must decide to select the action that maximizes
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Fig. 4. Hybrid control scheme.
the reward or the action that has not been fully explored.

There are many techniques to balance the trade-off between

exploration and exploitation. One of the simplest approaches

is called the e-greedy exploration method. In this method,

instead of being greedy all the time, the agent takes non-

greedy action once in a while, for example with the prob-

ability of e. Another category of methods is called softmax

action selection methods, among which the Gibbs or Boltz-

mann distribution is one of the most popular.

This method defines the rule of choosing an action with

probability

Pðs; aÞ ¼ eQðs;aÞ=tPn
b¼1 e

Qðs;aÞ=t (9)

where t is a positive parameter called temperature. High

temperatures cause all actions to be (nearly) equiprobable;

low temperatures cause a greater difference in selection

probability for actions that differ in their value estimates.

When t ! 0, softmax selection becomes the greedy action

selection. A more detailed introduction of reinforcement

learning can be found in Sutton and Barto [21].

One of the most popular algorithms, which is also used in

this study is theQ-learning algorithm introduced byWatkins

and Dayan [22]. The key concept is that the action-value

function Q(s, a) is used directly to approximate the optimal

value Q*(s, a). The update rule is defined as

Qðs; aÞ ¼ Qðs; aÞ þ aðr þ g max
a0

Qðs0; a0Þ � Qðs; aÞÞ

(10)

where 0 � a � 1 stands for a learning rate, and 0 � g � 1 is

the discount factor introduced previously. TheQ(s, a) values

are usually stored in a lookup table, the so-called Q-table,

and each entry represents an estimation of the Q-value of a

state-action pair. A simple interpretation of the Q-learning

algorithm is that the estimation of the optimal action-value

function Q(s, a) is a combination of past memory and new

experience.

2.2.2. Simulated reinforcement learning

The proposed hybrid control scheme is based on

simulated reinforcement learning as shown in Fig. 2. Instead

of getting experience from the environment directly, the

learning procedure of the controller is divided into two

phases: a simulated learning phase and an implemented

learning phase, as depicted in Fig. 4.
(1) S
imulated learning phase. In this phase, the learning

controller is trained by a simulator to learn as much as it

can within a certain training period or training effort.

This phase is a preliminary learning phase or a

‘‘guiding’’ procedure. The simulation model is not

necessarily a perfect match of the environment, but it

needs to provide the correct state-action information to

guide the learning controller to get into the right

‘‘zone’’. Since the simulation training is carried out off-
line, it takes only hours or days instead of hundreds or

thousands of days in reality to make the learning

controller find the optimal policy.
(2) I
mplemented learning phase. With some trained

experience, the learning controller can be implemented

into the actual environment. In the second learning

phase, the learning controller is expected to learn and

improve its performance further by directly commu-

nicating with the actual environment. This is considered

a refined learning phase or a tuning procedure. No

matter how good the training model is, there will always

be deviations between the model and reality. During the

second learning phase, the learning controller can

correct the mistakes that may exist in the simulator, and

discover experience that was not found in the simulation

training.
Simply said, in the hybrid control scheme, the simulated

learning phase overcomes the slowness of pure reinforce-

ment learning, and the implemented learning phase offers

the opportunity to let the controller find the ‘‘true’’ optimum

in the actual environment. The dashed line in Fig. 4 indicates

that there is an opportunity to improve the performance of

the simulated learning phase by calibrating the training

model using the actual measurement during the implemen-

ted learning phase.
3. Overview of simulated and experimental control

performance

The application of classic reinforcement learning to the

optimal control of building active and passive thermal

storage inventory has been investigated in simulation studies

reported in [18,19,23]. In general, the results of these

simulation studies confirm that reinforcement learning

control is a feasible methodology to derive the optimal

control policy for this specific problem. The learning
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controller successively learns to pre-cool the building when

the building is unoccupied, and charges or discharges the

TES according to the utility rate structure. The operating

cost savings do not reach the levels of model-based

predictive optimal control, but are still substantial compared

with conventional control strategies. Theoretically, the

reinforcement learning algorithm can reach the true

optimum given properly selected learning parameters and

long enough learning time. The amount of required training

is not realistic if the controller is directly implemented in a

commercial building application. This constitutes the major

drawback of the reinforcement learning control approach.

This indicates that an Aristotelian learning control with no

prior domain knowledge, i.e., a tabula rasa, is not going to

be a practical solution and contextual information in some

form needs to be introduced to expedite learning of the

fundamental features of the problem, while reinforcement

learning accommodates the fine-tuning of the controller.

This inspires the generation of the hybrid learning control

scheme introduced in this study. An experimental study had

been carried out in the laboratory facility called Energy

Resource Station at the Iowa Energy Center in Ankeny Iowa

to validate the hybrid learning control approach and analyze

its performance. In the companion paper [24], a detailed

discussion of this experimental study will be presented.
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