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Abstract
This paper examines the statistical properties of occupancy in single person offices of a large office building in San Francisco. A

probabilistic model to predict and simulate occupancy in single person offices is proposed. It is found that vacancy intervals are exponentially

distributed and that the coefficient of the exponential distribution for a single office could be treated as a constant over the day. Occupancy

intervals are more complex than vacancy intervals. The distribution of occupancy intervals is time varying. Variations among different offices

are examined. The implications of the findings on thermal and air quality control are discussed.
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1. Introduction

It has been observed that offices in commercial buildings

are vacant for a large percentage of the time during business

hours. Bauman et al. [1] found that occupants were away

from their offices 25–30% of the nominally occupied hours

of the day.

Occupancy sensors are now commonly used for security

applications and for lighting control. Occupancy sensor

triggered lighting control has shown great potential to save

electrical energy when offices are vacant. Jennings et al. [2],

Maniccia et al. [3], and Richman et al. [4] reported electrical

energy saving in a range of 3–45% in office rooms based on

their field measurements.

The motivation for this study is to gain an understanding

of how occupancy sensing can be used for thermal and/or air

quality control in buildings. Using occupancy sensors, to

control temperature or air quality, is complicated by the time

lag required to return the temperature or air quality to an

acceptable condition after or just before a space becomes re-

occupied. Before we can use occupancy sensors for these

purposes, it is necessary to understand, and be able to
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predict, the transient nature of occupancy during nominally

occupied periods.

In this paper, we examine the statistical properties of

occupancy in single person offices of a large office building

in San Francisco. We propose a probabilistic model to

predict and simulate occupancy in single person offices,

and we discuss the implications of our findings on thermal

and air quality control.
2. Methods

2.1. Occupancy data logs

The study uses the occupancy logs obtained from 35

single person offices at a large office building from 12/29/

1998 to 12/20/1999. These data are taken from Jennings et

al. [2] and Rubinstein et al. [5]. For each office, the data log

contains a sequence of time-stamped events (occupied to

vacant or vacant to occupied). The sensors operate by

detecting motion, using an infrared sensor behind a fresnel

lens. A vacant to occupied event occurs when the room is

vacant and the sensor detects motion. An occupied to vacant

event occurs when there has been no motion for a time

interval that averaged 15 min for sensors used in this study.



D. Wang et al. / Energy and Buildings 37 (2005) 121–126122

Fig. 1. Distribution of hourly occupied time over 24-h of day for an office.
Fig. 1 illustrates the distribution of hourly occupied time

as a function of time of day for a randomly chosen office.

The notch in the bar is the median. The bar contains the

range between 25th and 75th quartiles. The whiskers extend

to 1.5 times the inter-quartile difference from the 25th and

75th quartiles. The dots are outliers. There are three distinct

levels in the hourly occupied time over the working hours.

From 8:00 to 17:00 h, 75% of the time the office is occupied

more than 25 min hourly except 12:00–13:00 h. There is no

difference in occupancy ratio in the morning and afternoon.

From12:00 to 13:00 h, 75% of the time office is occupied

less than 38 min. This may be caused by the lunch break.

From 17:00 to 19:00 h the office is occupied less than

10 min/h 75% of the time. This may be caused by the

occupant, leaving work and then a scheduled, short activity,

such as cleaning, occurs during that period of time. The

median of hourly occupied time has two peaks over 24 h,

one at 10:00–11:00 h and another at 15:00–16:00 h. During

these two periods of time, 25% of the time the office is

occupied full hour. The office is nominally occupied from

8:00–17:00 h.

Fig. 2 illustrates the distribution of the number of occu-

pied to vacant events for a randomly chosen office in a day. It

demonstrates that the occupant departs and arrives mostly
Fig. 2. Distribution of the number of occupied to vacant events for an office

in a day.
five to six times a day. The probability with one depart a day

is 8%. The frequency of departure and arrivals varies largely

from day to day.

Figs. 3 and 4 illustrate the distribution of the length of

occupancy and vacancy intervals for a randomly chosen

office during the recorded period. The occupancy interval is
Fig. 4. Probability distribution of the vacancy intervals for an office.

Fig. 3. Probability distribution of the occupancy intervals for an office.
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reduced by 15 min to compensate for the 15-min delay in

detecting an occupied-to-vacant event. It appears that

shorter intervals occur more frequently than predicted for

both occupancy and vacancy. Both distributions have long

tails.

2.2. Modeling

We propose a non-homogeneous Poisson process model

with two different exponential distributions to simulate the

occupancy sequence in a single person office. The reasons

for using such a model are, simplicity and the ability to

explain the observed behavior.

We assume the occupancy and vacancy intervals of an

occupant during business hours are independent and sequen-

tial random variables. This independence is tested by com-

paring the length of vacancy intervals and that of the

preceding occupancy intervals with a rank-based non-para-

metric method. The Spearman’s correlation coefficient is

0.1099, and the P-value under the null hypothesis that the

correlation of two is zero is 0.003 [6]. The test indicates that

there is a weak but statistically significant correlation

between occupied intervals and vacancy intervals. The

magnitude of the correlation is so small that we can ignore

it. Fig. 5 visually displays the length of vacancy intervals

versus that of the preceding occupancy intervals.

The intervals lengths are modeled as some exponentially

distributed random variables. The parameters of the expo-

nential distributions are estimated from the measured data,

using the maximum likelihood estimation method. The

model starts with a constant parameter for either occupancy

or vacancy interval. If the constant parameter does not fit

well, time-varying parameters are estimated and tested. The

variation of the parameters among different offices is exam-

ined.
Fig. 5. Length of vacancy intervals compared with the preceding occupancy

intervals.
3. Results

3.1. Parameter estimation

The lengths of occupancy and vacancy intervals are

modeled from two independent exponential distributions.

The density function of an exponential random variable is:

f ðyÞ ¼ ½1=b�e�y=b; y> 0 (1)

Maximum likelihood estimation method uses iterative

weighted least square (IWLS) procedure to estimate the

parameter b and its variance [7]. If the exponential model is

correct, dispersion parameter f should be 1. f̂ is estimated

from:

f̂ ¼
Xn

i¼1

ððyi � b̂Þ=b̂Þ2=ðn � 1Þ (2)

For the length of occupancy interval of the above ran-

domly chosen office: b̂occ ¼ 72:8 min, b̂occ is asymptoti-

cally normally distributed. Ninety-five percent confidence

interval is (67.80, 77.93) f̂occ ¼ 0:96.

For the length of vacancy interval of the above randomly

chosen office: b̂abs ¼ 42:6 min, b̂abs is asymptotically nor-

mally distributed. Ninety-five percent confidence interval is

(39.58, 45.74) f̂abs ¼ 2:13, assess the goodness of fit.

The goodness of fit of the model is evaluated by the scaled

deviance D � ðy; b̂Þ. It is calculated as [7]:

D � ðy; b̂Þ ¼ 2
Xn

i¼1

logðb̂=yiÞ
f̂

If the model is correct, then the scaled deviance should

have a chi-squared distribution with n�1 degree of freedom.

In other words, the model is rejected when D � ðy; b̂Þ>
x2

n�1;1�as; we use a = 0.05.

For the occupancy intervals of the above randomly chosen

office: D � ðy; b̂Þocc ¼ 2853:5g>x2
n�1;1�a ¼ 859:6228, so

the exponential distribution is rejected. For the vacancy inter-

vals of the above randomly chosen office: D � ðy; b̂Þabs ¼
516:8956<x2

n�1;1�a ¼ 797:0951, so the exponential dis-

tribution is accepted, with some over dispersion.

Figs. 6 and 7 compare the fitted and observed frequencies

of the lengths of the occupancy and vacancy intervals for the

chosen room. Both exponential distributions fit better when

the intervals last longer. They both underestimate the fre-

quencies when the intervals last less than 15 min.

The false vacancy record may contribute to the under-

estimate of the frequency of short vacancy. When sensors are

not able to detect motions of occupants, they record an

occupied-to-vacant event, which causes the lights to shut off.

If the room is actually occupied, the occupant may have to

wave his hands or move around to turn on the light again.

Such false vacancy and occupancy records are common in

commercial motion-detecting occupancy sensors. They are

not distinguishable from the normal events in the data set.
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Fig. 8. Estimated hourly varying occupancy and vacancy rate (variation

among different offices).

Fig. 6. Fitted and observed frequencies of the occupancy intervals.
We checked whether or not the occupancy intervals were

varying with time during the business hour. We fit the model

of occupancy intervals in 1-h intervals of the day. The result

is plotted in Fig. 8.

Fig. 8 shows that the occupancy intervals have a time-

varying distribution. X-axis tick 1 corresponds to the time

interval at 0.00–1.00 a.m., and so forth. Occupancy intervals

may have three time varying parameters, as in the morning,

lunch break, and afternoon. The estimated parameters range

from 40 to 108 min. But even when the parameters are

hourly varying, the only significant fits are intervals between

7:00–8:00, 11:00–12:00, and 20:00–21:00 h. Vacancy inter-

vals may have two rate levels, one lasts around 40-min

during most of the time of the working hour, another lasts

60–70 min at late afternoon after the normal night leaving

time. All the parameters are significant except the one at

16:00–17:00 h interval.
Fig. 7. Fitted and observed frequencies of the vacancy intervals.
We tested the non-homogeneous Poisson model on all 35

rooms. We found that the vacant intervals of all 35 rooms

were exponentially distributed. The mean vacancy interval

was different from room to room. When the mean vacancy

intervals were allowed to vary hourly, the fits were improved

at some hours, but not at all hours. The relationship between

the estimated lengths of occupancy intervals versus the

vacancy intervals for all offices is plotted in Fig. 9. One

office has very long occupancy lasting 224 min and three

other offices have very long vacancy lasting 111, 91, and

92 min. All other offices have averaged occupancy lasting

69 min and vacancy lasting 46 min. The mean vacancy

interval is independent of the mean occupied interval.

As summarized in [5], the hourly occupancy rate shows

three typical patterns from those offices. In the first office

type, occupants usually leave the office during the middle of
Fig. 9. Estimated lengths of occupancy intervals and vacancy intervals for

35 single person offices.
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Table 1

Comparison of simulation and measurement

Measurement Simulation

Total analyzed days per year 171 171

Average occupied hour per day 6.17 6.47

Standard deviation 2.56 1.38

Average vacancy ratio per day 0.20 0.33

Standard deviation 0.16 0.13

Average depart and arrival per day 4.93 5.51

Standard deviation 2.06 1.36
the day, which is similar to the office in Fig. 1. In the second

office type, occupants usually leave twice during the busi-

ness day, once in the morning and once in the afternoon. In

the third office type, occupants tend to stay in the office

during the entire business day.

3.2. Simulation

The fitted two parameters (72.78, 42.60) of the occupancy

and vacancy intervals are used to simulate the occupant

pattern in single person offices. A few adjustments of the

model are necessary in order to combine the clock-time

information into the simulation. The morning arrival time is

normally at 8:12 with a standard deviation of 11 min (mean

is obtained after trimming outliers at 25th and 75th quartiles,

standard deviation is estimated from 0.7 times the spread of

the inter-quartile). The night leaving time is normally at

17:48 with a standard deviation of 79 min. To accommodate

the low occupancy during 12:00–13:00 h, an independent

normal random variable (mean, 12:30 and standard devia-

tion, 15 min) is used to simulate the starting time of the

lunch break.

The simulation runs as long as the days having the

measurements. The statistics from the simulation and mea-
Fig. 10. Simulated hourly occupied rate as a function of time of day for a

single office.
surement are summarized in Table 1. The simulated occu-

pancy rate per hour is plotted in Fig. 10.

The simulation has a peak in the first hour, which Fig. 1

does not show. This peak is due to the assumption of the

normal distribution of the morning arrival time. Using robust

estimation, its standard deviation is very small. However, we

find that the morning arrival time is not normally distributed.

It has a small but very long right-hand (positive) tail. A more

precise simulation of morning arrival time could be achieved

by drawing samples from its empirical distribution, which

this study did not do.
4. Discussion

People think that their comings and goings are determi-

nistic, or they may work according to a schedule. But sensors

observe random occupancy behavior. This randomness is

similar to that in traffic movement naturally. Buses are

operated according to schedules, but the arrival time of a

bus at a stop is often modeled as a random process. Ran-

domness is caused by variable traffic flow, weather, road

condition, etc., and/or their combinations. Although, no

similar studies have been carried out to observe people’

movements in office buildings, one can guess that this

random occupancy behavior may be obtained through multi-

ple random factors and/or their random combinations.

It is found that the vacancy intervals are exponentially

distributed but occupied intervals are not. These findings are

not in conflict with each other. Compared to the vacancy

intervals, the occupied intervals are more complex. A single

motion sensor only records the largest time span of occu-

pancy status in the room. If occupancy is caused by more

than one occupant, then the sensor cannot tell when and how

long, individual occupants arrive and stay. If the occupancy

interval of each occupant were exponential, the recorded

occupancy would be a complex mixture of more than one

exponential distribution. This underlying occupancy interval

structure is likely to cause the deficiency of an exponential

model.

Using occupancy sensor to control temperature or air

quality has a potential to save energy by applying an

appropriate setback policy during business hours. The por-

tion of saved energy would be close to the proportion of

absent time by a simple first order approximation. But if the

setback policy is too aggressive towards energy conserva-

tion, occupants may feel uncomfortable when they return. If

the setback policy is too aggressive towards the comfort,

there may be no adjustment at all during the vacancy, and

therefore, waste energy. The occupancy model could help us

to understand the transient nature of discomfort cost and the

energy penalty associated with the variable re-arrival time.

The results reported here are derived from just one office

building. It is possible that occupancy behavior in other

buildings differs from that observed in this building.
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5. Conclusion

The significant findings from this study are as follows:
1) T
he vacant intervals were exponentially distributed.
2) T
he exponential model was valid even when observing

individual offices.
3) T
he mean vacant interval varied from office to office.
4) T
he exponential model was not validated for occupied

intervals.
5) A
 (time-varying) model fit the occupied intervals better,

but some intervals still did not pass the goodness-of-fit

test.
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