Atmosphäre und Terrestrische Ökosysteme -Können wir ihre Wechselwirkung beobachten?

Martin Heimann Max-Planck-Institut für Biogeochemie, Jena, Deutschland martin.heimann@bgc-jena.mpg.de

Credits: Christian Rödenbeck, Manuel Gloor, Stefan Körner

Der Kohlenstoffkreislauf im globalen Klimasystem

Berechnete globale CO2 - Aufnahme durch terrestrische Ökosysteme

Cox et al. 2001, Dufresne et al., 2001 Friedlingstein et al. 2003

Berechnete Änderungen 90N der terrestrischen 60N Kohlenstoffinventare im 30N Hadley Center Model 0 1860-2100 305

Globale Emissionen und atmosphärische CO₂ Wachstumsrate

Simple Linear Perturbation Model of the Global Carbon Cycle System of coupled reservoirs, each with carbon content n(t):

$$\frac{d}{dt}n_i(t) = \sum_j F_{i,j}(t) + Q_i(t), i = 1, m$$

Linear expansion of exchange fluxes for small perturbations; assumption that carbon flux depends to first order on donor reservoir:

$$F_{i,j} = k_{i,j}n_i(t) + \dots$$

 \Rightarrow System of first oder, linear differential equations!

If $Q(t) \sim e^{\mu t}$ then

 $n_i(t) \sim e^{\mu t}$

and

$$\frac{n_i}{n_j} = const$$

and

$$\frac{\dot{n}_a}{Q} = const!$$

1.2 Coupled Berechnete Uncoupled 1.0 Airborne Fraction in 0.8 den gekoppelten Kohlenstoffkreislauf 0.6 -Klimamodellen 0.4 0.2 0.0 1960 2000 2020 1980 Year 1.2 Coupled Uncoupled 1.0 0.8 0.6 0.4 0.2

Ermittlung von Quellen und Senken mit Hilfe der inversen Modellierung

 Der atmosphärische Transport definiert eine Abbildung vom Raum der Quellen Q in den Raum der Spurenstoffkonzentrationen (C=ρχ)

$$\frac{\partial}{\partial t}\rho\chi = -\nabla\cdot\mathbf{v}\rho\chi + Q$$

$$C_{mod}(\mathbf{x},t) = \mathbf{T}Q(\mathbf{x},t)$$

- Q(x,t) wird diskretisiert in Raum und Zeit: q_i , (i=1,...,n_q)
- ♦ Bereitstellung der *a priori* Information der Quellen: **q**_{aD}, **Cov**_Q
- Suche das Minimum der Kostenfunktion:

$$S^{2} = (\mathbf{T} \cdot \mathbf{q} - \mathbf{C}_{obs})^{T} \cdot \mathbf{Cov}_{obs}^{-1} \cdot (\mathbf{T} \cdot \mathbf{q} - \mathbf{C}_{obs}) + (\mathbf{q} - \mathbf{q}_{ap})^{T} \cdot \mathbf{Cov}_{q}^{-1} \cdot (\mathbf{q} - \mathbf{q}_{ap})$$

 Die lange Lebensdauer der betrachteten Spurengase verlangt lange spin-up und spin-down Zeiten (>2 a)

CO2 Bilanz von Europa

Interannuale Variabilität ermittelt aus zeitabhängier Inversion der atmosphärischen CO2 Messungen 1995-2000

Anomaly Flux, 1995 01 [gC m⁻² yr⁻¹]

Rödenbeck et al., 2003, Observations: NOAA-CMDL

Zusammenfassung

- Erste Simulationen des globalen Wandels mit gekoppelten Kohlenstoffkreislauf-Klimamodellen zeigen potentiell signifikante Rückkopplungseffekte
- Bis heute zeigt der globale Kohlenstoffkreislauf nur ein passives, lineares Verhalten bezüglich der anthropogenen Störung
- Globale Inversionsrechungen: heutige Auflösung auf der kontinentalen Skala; zeitliche Variabilität besser bestimmt als das zeitlich gemittelte räumliche Muster
- ◆ Interannuale (< -5a) Variabilität dominiert durch terrestrische Ökosysteme
- Vegetationsfeuer ein wichtiger Beitrag der interannualen Variabilität

Integration räumlicher und zeitlicher Skalen

Nächste Schritte zur Verbesserung der Top-Down Methode

- Ausbau des globalen Beobachtungssystems für biogeochemische Spurenstoffe
 - Verfeinerung des *in situ* Netzwerks (z.B. im Innern der Kontinente, u.a. mit Hilfe von "tall towers")
 - Kontinuierliche Konzentrationsmessungen
 - ♦ Multi-tracer Verfahren (CO, CH4, SF6, O2/N2, C-isotope,...)
 - Entwicklung von Satelliten-gestützten Sensoren (OCO, GOSAT,...)
- Methodische Entwicklungen
 - Hohe raumzeitliche Auflösung des atmosphärischen Transportes (z.B. durch Beizug eines atmosphärischen Mesoskalen-Modellsystems)
 - Datenassimilation: Einbezug von *in situ* Beobachtungen in gekoppelte Kohlenstoffkreislauf-Klimamodelle
 - Datenassimilation: Einbezug von Beobachtungen mit unterschiedlichen zeitlichen und räumlichen Charakteristiken (Konzentration, Flussmessungen, Forstinventardaten, Multi-tracer Daten, Fernerkundungsdaten, etc. - GEMS)