

C-Flüsse / (-Pools) in Ökosystemen aus experimenteller Sicht

R. Siegwolf Paul Scherrer Institut, CH-5232 Villigen-PSI

CO₂-Konzentration in der Vergangenheit

Figure 1. The Vostok ice-core record for atmospheric CO_2 concentration from Petit et al. (1999) and the "business as usual" prediction used in the IPCC Third Assessment (Prentice et al. 2001). The current concentration of atmospheric CO_2 is also indicated.

Years before present

C-Flüsse und C-Vorräte

Größenordnungen der CO₂ und H₂O Flüsse Für verschiedene Maßstäbe

Scale				Network and	
Gas					Global
					0.52 Gt Tag ⁻¹
					0.52*10⁰t d⁻¹
ЦО	36 µg Tag⁻¹	42 g Tag⁻¹	120 kgTag ⁻	28'500 ktTag⁻¹	100 Gt Tag ⁻¹
Π ₂ U	36*10 ⁻¹² t d ⁻¹	42*10 ⁻⁶ t d ⁻¹	120*10 ⁻³ t d ⁻¹	2,9*10 ⁷ t d⁻¹	100*10 ⁹ t d ⁻¹

Möglichkeiten zur Erfassung der Kohlenstoffflüsse

Abschätzung der Biomassenänderung Biomassenvorrat oberirdisch C-Vorrat im Boden Abschätzung der Änderung des C-Vorrates im Boden

Räumliche und zeitliche Verteilung der δ^{13} C im Boden-CO₂

50

 $\frac{20}{10^{-0}}$

May

June

August

September

28

-29

-30

 $\delta^{13}C$

28

Kontrast zwischen Mycorrhiza und Saprophyten im δ^{13} C Signal

Messung und Berechnung des CO₂-Flusses

Die Flussberechnungen basieren auf dem Fick'schen Diffusionsgesetz

 $\frac{dm}{dt} = -D * A * \frac{dC}{dx}$

vereinfacht

$$J = \frac{\Delta C}{\Sigma r} = \Delta C * g_l$$

Messung und erste Modellierung der Netto-CO₂-Assimilation

$$A_{N} = f(C, I, T, F)$$

Abhängigkeitskurven (Response curves)

CO₂-Kurve

$$W_c = \frac{V_{C \max} \cdot C_i}{C_i + K_c (1 + O/K_o)}$$

$$W_{j} = \frac{J \cdot C_{i}}{4(C_{i} + O/\tau)}$$

 W_c ... Karboxilierungsrate limitiert durch Rubisco (Quatität, Aktivierg.,Kinetik) Wj ... Karboxilierungsrate limitiert durch Rubisco Regeneration (CC) V_{cmax} ... max. Karboxilierungsrate K_c, K_o ... Michaelis-Menten Konst. C_i, O ... CO_2, O_2 Partialdruck J ... Elektronen-Transportrate τ ... Spezifität der Rubisco bez. CO_2, O_2

Lichtabhängigkeit

Die grosse Bandbreite ist Spezies spezifisch, entsprechend werden die Parameter J_{max} , R_d und α angepasst.

Für den Elektronentransport

Für den Netto-CO₂-Gaswechsel

Temperaturabhängigkeitskurve

$$V_{\max}, V_{C \max}) = \frac{e^{(c - \Delta H_a / R \cdot T_K)}}{1 + e^{(\Delta S \cdot T_K - \Delta H_d) / (R \cdot T_K)}}$$

$$(K_c, K_o, R_d, \tau) = e^{(c - \Delta H_a / R \cdot T_K)}$$

$$\overset{\Delta H_a, \Delta H_d \dots \text{ Aktivierungs- De-}_{aktivierungs-Energie (k J mol-1)}$$

$$\Delta S \dots \text{ Entropie Term (k J K-1 mol-1)}$$

$$T_k \dots \text{ Temperatur (Kelvin)}$$

$$R \dots \text{ Gaskonst. (0.00831 k J K-1 mol-1)}$$

c... Skalierungsparameter

Berechnungsablauf

- 1. Bestimmung von J_{max} , V_{Cmax} , K_c , K_o , Rd und τ für die aktuelle **Temperatur**
- 2. Berechnung von J für eine die aktuelle Lichtintensität
- 3. Ermitteln von **W**_i (Verwendung von J), für die aktuelle **CO**₂-Konzentration
- 4. Berechnung von W_c unter Verwendung der oben ermittelten Parameter
- 5. Berechnung der **Netto-CO₂-Assimilation** mit folgender Gleichung

$$A_{N} = \left(1 - \frac{\frac{1}{2} \cdot [O_{2}]}{\tau \cdot C_{i}}\right) \cdot \min\{W_{c}, W_{j}\} - R_{d}$$

Kontrollmechanismen der Stomata

Schliessende Spaltöffnung auf der Unterseite des Blattes. Längsdurchmesser: 10 - 15 µm

Feuchte - Abhängigkeit

Dazu dient die folgende empirische Funktion

 $gs = g_0 + g_1 A_N RH/C_a$

Wobei

Ci = Ca - A*1.6 / gs

Iterative Lösung, dh. keine analytische Lösung

Extrapolation auf Pflanzenbestände

Simulation der Bestandesphotosynthese

Nichtlineare Zusammenhänge

Wie weit entsprechen solche Hochrechnungen der Realität?

Wie erfassen wir z.B. Anpassungsmechanismen?

Temperatur-Bandbreiten

Abb. 1.1.3: Die Lebensäußerung eines Organismus als Funktion eines (abiotischen) Umweltfaktors. Als Maß für die Lebensäußerung kann die **relative Wuchsrate R** dienen:

 $R = \frac{\Delta Biomasse}{\Delta t} \times \frac{1}{Biomasse}$

Saisonaler Verlauf der Kältetoleranz

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Anpassung an hohe Temperaturen

Abb. 1.3.10: Abhärtung von Tannennadeln nach einer Hitzestressbehandlung. Schädigung und Abhärtung wurden an der Photosyntheseleistung der Nadeln verfolgt. 1: Erholungsphase nach erstmaliger, 2: nach zweiter Hitzestressbehandlung (44 °C, 30 min). Ausmaß der Schädigung und Erholungsphase (Reparatur) sind bei der zweiten Stressbehandlung deutlich geringer als beim ersten Hitzepuls. Aus Larcher (1987).

Aklimatisierung der Respiration

Unterschiedliche Anpassungsmuster der Pflanzen auf verschiedenen Ebenen z.B auf erhöhte [CO₂]

Pro- cess Level	Biochemistry	Physiology	Morphology	Canopy	Ecosystem
Res- ponse	Reduction of the Rubisco activity	Stomatal Closure	Reduction of the stomatal density??	Reduction of leave density	Nutrients limitation

Reduzieren auf die relevanten Umwelteinflüsse

CO₂ Fluss-Messungen des Ökosystems

Open path IRGA zur direkten Messung der CO2 Konzentration Sonicanemometer zur Messung turbulenter Flüsse

 $NEE = \overline{\rho w'C'} + \rho \frac{dC}{dt} = F_R + F_A$

Seebodenalp

A: geschütztes Feuchtgebiet Um: extensiv genutzte Wiese Up: extensiv genutzte Weide

Räumliche Variation: Footprint Analyse

- Nur **4 Flächen** sind im Footprint, kein Feuchtgebiet
- 2 Wind Sektoren: Wiese und Weide

Assimilation = GPP

Jahrring-δ¹³C, Wassernutzungs-Koeffizient in Bäumen und Global Change

Standorte mit Jahrring-Isotopen-Chronologien

δ^{13} C-Chronologien

 Fraxinus Bet
 Abies Bet
 Fagus Bet
 Picea Bet
 Pices Eig
 Fagus Bur
 Fagus Kra
 Fagus Twd
 Fagus Twh
 Picea Kop

¹³C Isotopen Fraktionierung im Blatt

Bedeutung der interzellularen CO₂-Konzentration

A=(c_a-c_i)*g A=Photosynthese ~ CO₂-Aufnahme g=stomatäre Leitfähigkeit ~ Wasserabgabe

W=A/g=c_a-c_i W=Wasser-Nutzungs-Koeff. ~ C-Aufnahme pro Einheit Wasserverlust

 $\delta^{13}C_{\text{plant}} = \delta^{13}C_{\text{air}} - (a+(a-b)c_i/c_a)$

Vorgehen: δ^{13} Cc_i, c_a-c_i, Wberechnen

C_i-Chronologie

C_a-C_i und die Wassernutzungseffizienz nahm bei Bäumen um fast 50% zu

Resultatinterpretation

Das Verhältnis zwischen dem Wasser und dem CO₂- Fluss hat sich verändert:

- Entweder wird weniger Wasser verbraucht bei gleich bleibender CO₂-Aufnahme
- oder mehr CO₂- wird aufgenommen bei gleichem Wasserverlust
- Oder beide Grössen haben sich verändert

Trends in den Isotopenverhältnissen entlang der nördlichen Europäischen Baumgrenze in Eurasien

M. Saurer, F. Schweingruber, E.A. Vaganov, S.G. Shiyatov, R. Siegwolf

Häufigkeitsverteilung der Änderung der Isotopenverhältnisse

Änderung des Wassernutzungskoeffizienten zwischen 1861-90 und 1961-90

	Larix	Pinus	Picea
Number of sites	12	6	8
W _i 1861-90 [μmol mol ⁻¹]	63.4 ±7.9	65.1 ±6.2	68.7 ±5.4
W _i 1961-90 [μmol mol ⁻¹]	74.4 ±7.9	76.2 ±7.2	84.2 ±5.7
%-change of W _i	17.4 ±4.5	17.2 ±2.7	22.6 ±12.1

Jahrring- δ^{15} N als Indikator für Veränderungen der Stickstoffemissionen entlang der Autobahn

NOx Emissionen entlang der Autobahn

$\delta^{\rm 15} N$ in der Biomasse

δ^{15} N in Nadeln 60-70 jähriger Bäume (*Picea abies*) entlang der Autobahn

 δ^{15} N Werte von 5 jährigen vertopften Bäumen (*Picea abies*) nach 2 jähriger Exposition

$\delta^{15} N$ Werte des Bodens am Versuchsort

δ^{15} N Muster in Jahrringen

Schlussfolgerungen

• Die isolierte Betrachtung einzelner Prozesse führt sehr leicht zu falschen Schlussfolgerungen und Fehleinschätzungen bezüglich der Auswirkungen auf Ökosystemebene.

• Es ist daher dringend notwendig, die Untersuchungen von einzelnen Prozesse an Ökosystemkomponenten auf gesamte Systeme räumlich und zeitlich auszudehnen.

• Einfache experimentelle Ansätze mit stabilen z.B. mit Isotopen in Jahrringen ermöglichen den Zugang zu wichtigen Informationen von zeitlich und räumlichen Umweltveräderungen.