Daniel Keller

Intfroduction to the Dialog Machine

Bericht Nr. 5 / November 1989

Projekt-Zentrum IDA
Eidgendssische Technische Hochschule Zurich

. :
Ke 060 P

o

Daniel Keller

Infroduction to the Dialog Machine

Bericht Nr. 5 / November 1989
PrOJek’r -Zentrum IDA

Eldgen053|sche Techmsche Hochschule Zirich

‘Adresse d‘eslAutors: :

" DanielKeller - .
. Projekt-Zentrum IDA -
. ETH-Zentrum - = -

CH8092 Zrich

~ ©1989 ' Projeki-Zentrum IDA, ETH Zirich

St v

T

a.!'
o

Contents

Preface

Scope of this Infroduction

Basic Concepts and Features
The Concept of Active Elements
A Smdll Example

Building up a Menu Bar

Using Windows

OQutput to a Window

Input from the User

Summary of the 30 Most Used Commands
Advanced Topics

Appendix

10
10
11
12
13

15

19

Preface

The Dialog Machine is a library of Mo-
dula-2 routines for the easy program-
ming of user-friendly interfaces on the
Macintosh and the PC. It consists of
about 300 procedures for the creation
and handling of menu bars, windows,
graphical and textual output, and input
via the mouse and dialog boxes.

The Dialog Machine (later called the
DM) was created at the ETH in the years
86/87 for the easier programming of the
Apple Macintosh in Modula-2. The -
library contains practically everything
needed to write programs which fully
use the capabilities of the Macintosh (see
- the screen shots in this paper). However
it is clearly a tool to simplify the pro-
gramming of a graphical user interface
and therefore it is restricted in its

r
& Browse Manual

File Simulation Pﬂrameters

functionality. As a benefit the code of

_ programs using the DM can be very

short - considering their appearance and
ease of use. The appendix lists seven
sample programs, all of which count less

“ than 200 lines.

In 1988/89 the DM was ported to the
MS-DOS/PC. Apart from a few omis-
sions and limitations, a Modula-2 pro-
gram using the DM can easily be ported
from the Macintosh to the PC. One only
needs to re-compile and link with the
DM/PC library. The resulting applic-
ation then runs under GEM and makes
full use of the mouse, drop-down menus,
and windows, thereby giving the same
user-friendly look and feel as on the
Macintosh.

Control ler Output u

Process Dutput y

bl 00 | CHERC SRR e R O SO R O LR RO 2'00 T T T T R L R
0.00~[\'Z 5 o.oaﬂ/—hli
Set Process Parameters:
— 10.0 20.0 30.0 40.0 50.0
a = [0.01 ... 2.0] e
b= _ [u o1 2 n] Imaginary Part
C = 1.0 E [D0.01 ... 2.0] 2.00 7
:] X
CANCEL - 0 NN x %
Y
—Kp = 1.00, Ki= 0.00 ; a= 1.00, b= 1.00, c= 1.00 | -2.00 -
Kp =" 1.00, Ki= 0.00 ; @= 1.00, b=.1.00, c= 1.00 1

|'. LS I GRS s A A |
-4.00 -2.00 0.00_ 2.00
Real Part

Fig. 1: sample screen of a program usmg the DM with menus, windows, graphical out-

put, and a dialog box.

. Brouwse Directory

Title

Array Setup
" Rlaoribhag
Bubblesort
Shakersort

Shellsort
Heapsort

Array Representation

Selectionsort

283 Comparisons
o6 - Exchanges

START

ooy

Quicksort !
Epilog

PRUSE

GONT IBUE

ST

Fig. 2: PC-screen dump of a program which was originally written for the Macintosh
and then ported to the PC with only a few hours work.

Scope of this Introduction

This paper is intended as a first introduc-

tion to the DM for programmers who are
already fluent in Modula—2 . No aid is
given in explaining the language Modu-
la-2. Itis also assumed that you are
familiar with the user interface concepts
of the Apple Macintosh (or the GEM
Desktop on the PC). Before attempting
to read this, you should already have
worked with either a Macintosh - or
another window-based system with a
mouse - for more than a few days. Itis
recommended to read the chapter on
User Interface Guidelines in Volume 1 of
Inside Macintosh.

The paper is divided into two parts: the
first one explaining the 30 most used
commands of the DM, and the second
one giving an outlook to the more
advanced topics, i.e. the over 250
remaining commands which are used

less frequently.

This short introduction does not relieve
you from the burden of reading the
comments in the definition modules of
the DM. It only gives you a brief
overview, so that you get to know the
most important concepts before you start
programming.

Basic Concepts and Features

The Concept of Active Elements

The DM takes full control over the user’s
input, i.e. mouse clicks, keystrokes, and
menu selections. Some of the user’s
input the DM handles all by itself, e.g.
dragging a window to another location
requires no code to be written, all is done
by the DM automatically. Some other
input must be handled by the program,
e.g. the DM must know what to do when
the user selects a menu entry.

The concept to handle such user actions
is simple: the DM provides two sorts of
active elements: menu commands (also

called "menu entries") and push buttons.
All the programmer has to do is to tell
the DM which procedure to execute
‘when the user clicks onto one of the ac-
tive elements: each active element must
have a procedure attached. The rest (i.e.
event handling loop, menu inversion,
etc.) is taken care of by the DM.

The following code fragment illustrates
this concept. This fragment installs one
menu with two command entries. The
title of the ' menu is "Simulation" and the
text of the two menu entries is "Open
and read data file" and "Draw the curve".

InstallMenu(SimMenu,
InstallCommand(SimMenu,
InstallCommand(SimMenu, ...

"Simulation",

PROCEDURE ReadSimData;
BEGIN
GetExistingFile(...FileIsOpen);
THEN :
IF FileIsOpen THEN
WHILE NOT EOF() DO
END;
END;
END ReadSimData;

et
... "Open and read data file",
“"Draw the curve",

ReadSimData ...);

PlotSimCurve ...); '

PROCEDURE PlotSimCurve;.
BEGIN.
IF NOT WindowExists (CurveWindow)

CreateWindow(....);
END;
SelectForOutput (CurveWindow) ;

END PlotSimCurve;

W

Y Simulation

Fig. 3: The menu bar created by the above code fragment

One parameter of the procedure
InstallCommand is the name of another
procedure (here ReadSimData and _
PlotSimCurve), namely the procedure to
be executed when this menu entry is
selected. The DM now handles all user
inputs: whenever the user selects one of
these two entries, the corresponding
procedure (ReadSimbata Or
PlotSimCurve inthe above example) is
executed by the DM.

The typical DM program first creates a
menu bar by calling InstallMenu and
InstallCommand, thereby attaching a
procedure to each menu entry. This
procedure must be without parameters
and must be located at the top level of
the module. After having written the
parameterless procedures and after
having built the menu bar, the program
passes the control over to the DM with
RunDialogMachine. This means:

"Look, my dear Dialog Machine, I have

_constructed the menu bar with the
attached procedures. Now YOU take

r

Y WindowDraw
Open window |
Draw lines _
Clear window

uit 5

over and monitor all the user’s actions
with the mouse. You know now which
procedures to execute when the user
selects a menu entry."

A Small Example

The following sample program allows to

open a window, draw some lines into it,
clear the window contents, and exit the
program.

Note that the program does not prevent
the user to open the window a'second

‘time or to draw into the window when it

is not open. Enforcing a certain se-
quence of commands or disabling unap-
plicable commands can be achieved by
enabling and disabling the appropriate
menu entries so that they cannot be sel-
ected when they should not. This is not
done here. The purpose of this example
is to demonstrate the typical structure of
a DM program.

Fig. 4: A screen dump from the program "First" (the Quit command in the menu is

automatically added by the DM)

MODULE First; (* Example of a small Dialog Machine program *)

FROM DMMaster IMPORT RunDialogMachine;

FROM DMMenus IMPORT Menu, Command, Separator, AccessStatus, Marking,
InstallMenu, InstallCommand;

FROM DMWindows IMPORT Window, WindowKind, Scro;lBars, WEFixPoint,
i CloseAttr, ZoomAttr, WindowFrame, RectArea,
CreateWindow, AutoRestoreProc;

FROM DMWindowIO IMPORT EraseContent, SetPen, LineTo;

FirstMenu: Menu;

MakeWindowComm: Command;
DrawLinesComm: Command;
ClearComm: Command;

TheWindow: Window;

PROCEDURE MakeWindow;

VAR,
BigFrame: WindowFrame;
BEGIN _
WITH BigFrame DO
X sm 50y o=t 50 : (* coordinates of lower left corner *)
‘'w := 300; h := 250; (* width and height of the window *)
END;

CreateWindow (TheWindow, FixedLocation,
WithoutScrollBars, WithoutCloseBox, WithoutZoomBox,
bottomleft, BigFrame, "This is not a title", AutoRestoreProc);
END MakeWindow;

PROCEDURE DrawlLines;
BEGIN
SetPen(20,
LineTo(180,
LineTo(180, 230
LineTo(20,
END DrawlLines;

(* coordinates within the window *)

NN
o o
— e e e
e %5 N e

[y
o

BEGIN
InstallMenu(FirstMenu, "WindowDraw", enabled);
InstallCommand (FirstMenu, MakeWindowComm, "Open window",
MakeWindow, enabled, unchecked);
InstallCommand(FirstMenu, DrawLinesComm, "Draw lines",
DrawLines, enabled, unchecked);
InstallCommand (FirstMenu, ClearComm, "Clear window",
EraseContent, enabled, unchecked);
RunDialogMachine;
END First.

Building up a Menu Bar
Menu entries and separators

A menu bar is built up from left to right.
The first InstallMenu command creates
the first menu after the ®-menu. With
the procedure InstallCommand a single
menu entry can be added to an existing
menu. The new command is added at
. the bottom of the list of commands

already in the menu.

Note: With the DM it is not possible to
insert either a menu between two menus,

" or a menu command between two com-
mands. Menus and commands are al-
ways added to the right of the menu bar,
or the bottom of a menu resp.

A separator (a dotted line or a blank line)
can be added to a menu by using the
InstallSeparator command. This is

- useful for separating one group of related
commands from another.

The Quit Command

Each menu-driven application must have
a QUIT command in order to be able to
exit properly. With the procedure

_InstallQuitCommand a separator and a
menu entry is added to the leftmost
menu. The DM terminates when the
user selects this entry. If you never issue
acallto InstallQuitCommand before
RunDialogMachine is called, the DM
automatically adds a QUIT entry in the
leftmost menu.

Enabling and Disabling Menu Entries

Menu entries can be disabled (their text
appears in a light grey as opposed to full
black) so that they cannot be selected.
This is a very useful feature to ensure
that certain commands cannot be issued
at certain times, e.g. the command "Read
data file" should be disabled when no
data file is open (see Fig. 5); after having

10

opened the file, the command "Read data .
file" can be enabled. Turning a command
on and off is done with calls to
DisableCommand and EnableéCommand.

r

& Qi Browse Manual

Create ...
Open ...

Read dala file

Quit

Fig 5: A menu with separators and a
disabled command.

Using Windows
Creating a Window-

Windows come in different shapes: they
can be small or large, they can have a
title bar or not, they can be moveable or
sizeable or both, etc. All this is con-
trolled with the parameters to the
CreateWindow command.

There are four basic types of windows
provided by the DM (see Fig. 6):

1) a very simple window which cannot
be re-sized, nor moved (dragged) to
another location: FixedLocation

2) one that cannot be resized, but moved
around: FixedSize

3) the same as 2) but with a title bar

4) a window which can be dragged
around and re-sized

The windowFrame parameter for
CreateWindow specifies the size of the
usable area (without the title and scroll
bars) within the window in pixels. The
X and Y coordinates specify the location
of the lower left corner.

To make the life of programmers easy,
the DM provides automatic mechanisms
for the restoring and scrolling of win-
dows. _ ‘

- o |§D§.Small'wind‘ow =pE

. GrowOrShrinkOrDrag - B

- FixedLooTitleBar without ZoomBox
: without CloseBox -

=

= WindowTitle Efil- .

A staris born

' FixedLocation

Fig. 6:- Window types provided by the DM -

. The Concept of the Current Output
Wmdow

" The DM,always lqiews a current output

“window. All output takes place in this .

- window. -A newly opened window.auto-

- matically becomes the current output

- window. ‘With multiple windows it is
possible to direct the output to the

“ desired window by using the. procedure |
. SelectForoutput. This defines the new -

 current output window. Note that the °

- current output window needs not be the - |
- -top:(front) window, thiey can be d1fferent '

1 Textual Output ,'

- (see also the definition modules of .
. "DMWindow and DMWmdowIO)

: Cleanmg and Closmg a W’ndow
The contents of the current output

‘window can be blanked (cleaned) by -
using the command EraseContent.

Closing and removing a window from)

the screen can be done thh

e RemoveWJ.ndow

11

Out‘puf‘to a Window

The cursor can be placed anywhere in
the window by using setPen (pixel .

| coordinates X, Y. with fixpoint = lower ~

left corner). or, setPos” (Character cell

‘| coordinates Line/Column with fixpoint= . .
. upper left corner). Both procedures :

move thé same pen. posmon 'All draw-

"ing, wrmng, or pamung now takes place o
| startmg from thls pomt. All-output Tou-.
' tmes move the pen position.

The DM prov1des the usual routines for |

 ASCII output, like: ‘WriteString, . . -
»Wr:.teInt, WriteReal, Write,
| Writeln, etc,, starting from the

current pen position. -
The: current font with its caractensucs
(default: plain Geneva 12 on a Mac, the

|. System font on a PC) can be changed
. w1th SetWindowFont o .

Drawing Primitives

Drawing of simple graphiés can be

‘achieved with the routines bot, LineTo

(from the current to the new location),
circle, and Area (paints a rectangular
arca) The pattern with which all draw-.
ing takes place can be changcd with.

: SetPattern .

Dzsplaymg MacPamt chtures

‘recommended to paint them first with.

" MacPaint or another painting program.
After that the picture can be copied' to
‘the clipboard and from there into a re-

- source file (use the program DMResMo-

ver to achieve this). With the call

‘DisplayPredefinedPicture such a
picture can be displayed in a window.

Inbut from the User’

o Modal and Modeless Didlogs '

modal
In a modal dialog the user 1s forced to

terminate the dialog by using one of the - "

exit buttons (usually labeled CANCEL

* . and OK). No other action outside the

* dialog box can be taken, i.e. the user is
forced i mto ‘a mode '

'modeless : '

The modeless dialog on the other hand

. offers the user the choice to terminate the
dialog or to do something else, e.g. sel-

. ecting another window or selecting a

menu entry. The modeless dialog is not

used as often as the modal dialog, al-
: t.hough it is friendlier to the user- because

it-leaves more choices open rather than -

forcing the user to do somcthmg partic-
ular ' 4 o :

- An example for a modeless dialog is the
"find string" box in a word processing

- program: you can'enter.a search string,

- search for the occurrences of the string,

or just click into the text- window and
continue editing without having to ter-

minate the search dialog by pressing OK. |

Modal Dialog Boxes

* The Module DMEntryForms contains

the procedures to.construct modal
dialogs: stringField, RealField,

- | RadioButton, CheckBox, efC. (see the
_ | examples FontStyleTest and PaintModes
To show more elaborate plctures itis - o

in the appendix). After having placed

- the fields, the program passes control to- -+ -
- the DM by calling useEntryForm. The -

DM opens a dialog box of the specified
size and first completes the dialog by
adding two buttons labeled CANCEL

-and OK. Then it handles all user input
like clicking a check box, skipping to the -
. next editable field with the TAB key, .

editing a number field, etc

‘When the user presses one of the two
exit buttons (CANCEL or OK) the pro-
cedure UseEntryForm returns and the

1" contents of the fields and the state of the
-check boxes and radlo buttons can be
exannned . .

Modeless Dialogs

| - Modeless dialogs can be constructed by

opening a window and placing :
EditFields into it (see the paragraph on
EditFields in the section Advanced
Topics and DMEditFields.DEF).

A PushButton (from DMEditFields) is
- the most often used element of a mode-

- less dialog. Such a button can be placed

into any window. Similar to a command

_entry in a menu the programmer attaches

~ a procedure to this button. The DM mo-

nitors the user “s action, and - since the
button is an "active element" - calls the -

attached procedure when the user prcsses ,

the button

12

M

Summary of the 30 Most Used Commands

DMMaster InitDialogMachine g s only in the PC version
RunDialogMachine :

DMMenus InstallMenu
: InstallCommand
InstallSeparator
InstallQuitCommand .
DisableCommand
EnableCommand

DMWindows CreateWindow
RemoveWindow -

DMWindowIO SetPen
SetPos
Dot
LineTo
WriteString
Writelnt
WriteReal
WriteLn
DisplayPredefinedPicture
EraseContent
SelectForOutput

DMEntryForms StringField
IntField
RealField
CheckBox ;
DefineRadioButtonSet
RadioButton
WriteLabel
UseEntryForm

DMEditFields PushButton

13

L[

L
"“'-ti' .
I3

T

Bl
o

L.

Advanced Topics

Many programmers will only use the 30
- Most Used Commands of the previous
paragraphs (and will write bautiful pro-.
grams!). However, to take full advan-
tage of the graphical user interface ala -
Macintosh one might need the elements
and commands described briefly in this
second part of the introduction.

The description of the commands is not
exhaustive. It is intended to show the
further possibilities of the DM without
teaching the details of the calls (which
can be looked up in the .DEEF files).

Two-dimensional Funciidn Graphs

The module DM2DGraphs offers some
sophisticated routines for showing two-
dimensional graphs in a window. Scaling
and labeling of the axes is done automa-
tically. '

DefineGraph, DefineCurve and plot
are (almost) the only commands needed
to create gorgeous Curves.

File Access

The DM supports the standard Macin-
tosh (and GEM) mechanism for selecting
and opening a file with a file selector
box. The routines for reading and
writing text (ASCII) files are provided
(including GetInteger, PutInteger,
. GetReal, eftc.).

s

" Controlling the Cursor Shape

A change of the cursor to the wristwatch
symbol is done with a call to
ShowWaitSymbol. The user now gets the
visual feedback that something lengthy is
going on, e.g. reading a file or a long
calculation. A call to HideWaitSymbol
reverts to the normal arrow cursor.

Watching the Mouse

" GetCurMousePos delivers the current

mouse position. RectClicked and -
PointClicked allow to monitor mouse
clicks at specified locations withina
window. The program MouseTest in the
appendix demonstrates the use of these
procedures.

Dragging -

It is one of the nice things on the Macin-

~ tosh that the user can pick up an object

and drag it somewhere else. The DM
supports this feature in a very easy way:

- just call the procedure brag with two

other procedures as parameters, one to be -
called repeatedly during dragging to .
draw the outline of the dragged object,

the other to erase the object at its old

- location and re-draw it a the new loca-

tion. Everything else is taken care of by
the DM (see the sample program
DragZoom).

i ———— L

| Keyboard Equwalents for Menu

Entries

Tt is good practice to provide keyboard

equivalents for often-used commands
(like the standard abbreviations $-C, X,
V for Copy, Cut, and Paste, %-S and P

" for Save and Print, and %-Q for Quit).
The procedure InstallaliasChar.

‘allows to add a Keyboard equivalent for

the specified menu entry.

Edit Fields

. The module DMEditFields provides all -
the routines for modeless dialogs. Edit-
- Fields can be placed into any open win-

dow with the routines stringField,
CharField, IntField, RealField,

PushButton, etc.. The DM automatic-
.ally watches for clicks into any of these
fields and lets the user edit the (editable) -
.- "fields. Whenever the program needs the
. values, it can test and fetch them with the
_ routines GetString, IsChar, IsReal,

IsInteger, GetRadioButtonSet,€tC.

- EditFields can be enabled, disabled,
preset with a-value, and removed from
the wmdow, :

Scrolling "

' The window contents can be scrolled -

either automatically or by explicitely
asking for the scrollbar positions and -
moving the contents. It is recommended
to use the AutoScroll mechanism.only °

- (seé the sample program ScrollTest)..

. C'Iibpi'ng

All output is automatically clipped by
the DM to the work area of the current
window. Under programm control the
painting area can be further restricted by
specifying a clipping rectangle and cal- .
ling the routine setClipping. .

| Restoring Window Contents

"Whenever windows overlap, the contents

of a window can be destroyed. - After un-
covering, the previously hidden parts

must be restored. This can be done auto- -
" matically by the DM s autorestore =~
mechanism. Heré each output command -
| is executed twice, first.it draws into the

window, and afterwards it draws a

* second time the same into a hidden

bitmap. Restoring destroyed parts of a
window now just means copying from

- the hidden bitmap into the window

Autorestonng is simple, but takes a lot of "
~memory for the hidden bitmap (up to ‘
22K per window on a Mac Plus, up to

200K with color monitors and larger
screens). Drawmg is also slower when

. -autorestoring isin effect because each
. output routine is executed twice. The

restoring itself (copying from the hidden

* bitmap into.the window-) is very fast.

Each wmdow has a restore procedure
attached (the Repaint parameter to

' CreateWindow). If it is the

AutoRestoreProc, the above mecha-
nism is in effect. Specifying the -
DummyRestoreProc means that no

- restoring takes place (except re-drawmg

EditFields in this wmdow)

| The programmer can specxfy h1s/her own -
- routine which will then be called when-
.. ever the window needs restoring. So the

programmer can pack all drawing calls
into one procedure and pass the name of

- this procedure as a parameter to the

CreateWindow call. _

Passing Control to the Dialog
Machine -

Usually the control is with the DM. The

DM monitors the user events (keyboard :
mouse clicks) and calls the "attach

procedures provided by the programmer.
In some cases the execution of the pro-

16

Yun

cedure takes a long time or the program o

executes a loop within this procedure.
- Now temporal control can be passed
‘back to.the DM, just for one spht second
- (around 20ms) by calling -
DlalogMachmeTask This means

‘ "Dear Dialog Machme, please check if

- anything of importance has happened

-since you last had control, e.g. the user

has selected a menu entry. If so, quickly

execute the attached procedure, but then
return control back to me as soon as
possible. Thanks.” '

' Hardw’are & Software -
-Envitonments\- - '

. Apple Macintosh

~ Any Macmtosh with at least 512K Bytes
of memory and with the new ROMs can .

be used for programmmg with the DM.
A hard disk is recommended, although it
is possible to develop applications with
only two 800K diskette drives.

' The DM Version 1.0 for the Mac re-
- quires either MacMETH 2.4 (does not -
run on the SE/30 and the Ilcx) or -

- MacMETH 2.5.2 to compile and link the

programs. MacMETH can be obtained .
from the Stabsstelle Software, Dept.
Informatik, ETH, CH-8092 Zunch

A separate edltor is highly recommen-
- ded, since the MacMETH Editor does

not adhere to the usual Macintosh inter-

_ face standards. Good choices: MEdit,
an editor with user-definable macros,

' written by Matthias Aebi, and QUED/M,

. a powerful editor with macros and -
-regular expression capabilities. -

: ':1‘7.

MS- DOS/PC

' The DM Version 1.0 for the MS-

DOS/PC requires an IBM-compatible -
computer with at least 512K memory,a- -
mouse (Microsoft, Genius, LOGITECH,
etc.), a hard disk drive, and a floppy-disk

. drive. The compller to use in connection

with the DM is JPI's TopSpeed Modula-

| 2 compiler (Ihad first used LOGI-

TECHs, but after five months of devel-
opment I switched to JPI - I never regret-

ted it, TopSpeed is a smart, lean,and . -
.fast environment. The only thing I miss

is mouse support in the editor).

" GEM s the graphical interface w1th |
- which the DM works. The GEM Desk-
'| . top is all it takes, the developer’s kit is-

not needed, except for those who want to
market the programs written with the

. DM (hcence and copynghts of DRI

Inc).

In order to run the programs which

. often use graphics heavily - sufficiently -

fast, a computer of the AT class (Norton
SIrating > 7) or at least an XT Turbo
(Norton SI rating > 2) is recommended. -
An ordinary PC-XT with 477 MHz
(Norton SI reference rating = 1) is too
slow for most DM applications. -

Itis also recommended that the computer
have the full 640K of memory, since
DOS and GEM eat up close to 200K

| already. After the smallest possible DM
-| program is loaded, a heap area of about

300K (of 640K) remams free

The screen must havc a resoluuon better
than 512 x 342 pixels (most screens do,
only the oldest ones used to have 640 x

* 200 which is not enough). The scréen
| can be color or monochrome, although
-the DM only draws in black-and-white. -

Appendix

A Bibliography

Apple Computer Inc.: Inside Macintosh,
Volume I, Addison-Wesley, 1985

Fischlin, Andreas: "The 'Dialog
Machine' for the Macintosh", Projekt-
Zentrum IDA, ETH Ziirich, 1988

Keller, Daniel: "Mac-PC compatibility"
(a short listing of inconsistencies bet-
ween the two versions of the Dialog
Machine), Projekt-Zentrum IDA, ETH
Ziirich, 1989

Listings of the DEFINITION modules of
the Dialog Machine (on disk).

19

B Seven Sample Programs

WindowTest

shows the use of several overlapping
windows together with the AutoRestore
mechanism

FoniStyleTest -
shows how different fonts and styles are

set with setwindowFont and the aid of a
modal dialog box

PaintModes :

all drawing primitives are demonstrated
in conjunction with the four paint modes:
replace, paint, XOR, erase

MouseTest

illustrates how to monitor mouse coor-
dinates and watch for clicks into a rec-
tangular area

ScrollTest _
the AutoScroll mechanism is demon-
strated

EFDemo
shows the use of EdltFlclds (modeless
dialog)

DragZoom

about dragging an object and drawmg its
outline, plus the use of
DisplayPredefinedPicture.

(This sample program only works fine
on the Macintosh. On the PC scaling a
picture with
DisplayPredefinedPicture does not
work - only a 1:1 display of pictures).

4. Aug.89

%

FROM DMMaster ~ IMPORT RunDialogMachine;

Moppm WindowTest ;

*

. * This program shows the use of several overlapping windows and their ha.ndlmg

* w.lf.h the mouse. It is also a test for the AutoRestore mecham.sm.

F.'ROM DMMénus) iMPORT Menu, Cohnrand 'InstallMénu, InstallCommand,
’) ' Separator, InstallSeparator, AccessStatus, Markmg, S

InstallQuJ.tComnand,

' FROM DMWindows IMPORT Wmdow, Creat,eWmdow, WindowKind, ScrollBars,

CloseAttr, ZoomAttr, WindowFrame, WFFixPoint,
‘. RectArea, RemoveWindow, RemoveAllWindows, .
FrontW:.ndow, AutoRestoreProc,

.FROM DmedowIO IMPORT Dot, Lme’l‘o, SetPen, GreyContent pat,' Area,

SetPos, Wn.teStrmg, SelectFonutput,

VAR »
FirstMenu: - - . Menu;
. OpenWindowComm: © Command;
- DrawComm: Command;

CloseAllWindowsComm: Command; .
CloseFrontWindowComm: Cormand,

nmdow'rable--’ ARRAY[1..20 1 oF WJ.ndow,
NrOfWJ.ndows. S . INTEGER

i .,PROCEDURE JustQult(VAR ReallyQu:l.t. BOOLEAN), '

BEGIN
ReallyQuit := TRUE; -

" END JustQuit;

PROCEDURE‘Draw: L o, . T
GreyBox' RectArea;
BEGIN
SelectForOutp.:t (Frontw:l.ndow () B ¥
Dot (90, 20); .
LineTo(110, 20
LineTo (' 105, 40
LineTo(160, 30
LineTo (- 120, 70
. LineTo(142, 62
-, ‘LineTo(110, 100
" . LineTo(130, 94
LineTo6(100, 140
"LineTo(: 70, 94
LineTo(90, 100
LineTo(58, 62
LineTo(80, 70
LineTo(- 40, 30
- LineTo(95, 40
LineTo(90, 20

We Ne .%o Ne NF Ne Ne “e %o Se Ve Ne s Ne “e

GreyBox.x := 20; GreyBox y 1= 160, GreyBox W i= 160, GreyBox.h := 30,

Area (GreyBox, pat:[1lghtGrey 1)
SetPos(2, 4); WrJ.teStr.mg("happy New Year!®);
END Draw;

PROCEDURE MakeWindow;
Frame WmdowFrame, ’

'BEGIN

20

i.
q t=

v

WITH Frame DO

' X := 20 + NrOfWindows*10; y := .20 + NrOfWindows*10;
W := 200; h := 200;

END;

INC(NrOfWindows); ;

CreateWindow (WindowTable[NrOfWindows], GrowOrShrinkOrDrag,

" WithBothScrollBars, WithCloseBox, WithZoomBox,
bottomleft, Frame, "Merry Christmas!", AutoRestoreProc);

END MakeWindow;

PROCEDURE DeleteFrontWindow;
VAR ;
w: Window;
BEGIN
w := FrontWindow () ;
RemoveWindow(w);
END DeleteFrontWindow;

PROCEDURE DeleteAllWindows;
BEGIN
RemoveAllWindows;
NrOfWindows := 0;
END DeleteAllWindows;

PROCEDURE MakeMenuBar;
BEGIN
InstallMenu(FirstMenu, "Windows", enabled);
InstallCommand (FirstMenu, OpenWindowComm, "Open new window",
MakeWindow, enabled, unchecked); -
InstallSeparator(FirstMenu, line);
InstallCommand (‘FirstMenu, DrawComm, "Draw into FrontWindow",
" Draw, enabled, unchecked); .
InstallCommand (FirstMenu, CloseFrontWindowComm, "Close FrontWindow",
DeleteFrontWindow, enabled, unchecked);
InstallCommand(FirstMenu, CloseAllWindowsComm, "Close all windows",
DeleteAllWindows, enabled, unchecked);
InstallQuitCommand ("Quit", JustQuit, 0C);
END MakeMenuBar;

BEGIN
NrOfWindows := 0;
MakeMenuBar;
RunDialogMachine;
END WindowTest.

€ Windows

Merry Christmas! -
[ECJE Merry Christmas! E01E

K3ihappy New Yea
BB e e e R B e R B EE B EE BB REY

[}

Merr

o

4

2+
happy New Ye

il

| happy Ne

I

21

MODULE Foni:StyleT'est:

o~
*

* This sample Dialog Mach:.ne program -shows the use of a dlalog
* box to change font charactéristics.
*
* . Exercise:
* Watch out for the font name .(Geneva, -NewYork.. .) and why it is *NOT*
* kept in the dialog box: whenever you select "Change text attributes"
* ° the font name is back to Chicago. Try to make it "remember" the font
* _ name you had selected 1ast. : . BRI

%)

" FROM DiMaster . . IMPORT RuanlogMachine, ,
FROM DMMenus IMPORT Menu, CQm-nand, Separator, AccessStatus, Mark:l.ng,

InstallMepu, InstallCommand, InstallQu:LtCon'mand-

FROM DMWindows = IMPORT Window, WindowKind, ScrollBars, WEFixPoint,

CloseAttr, ZoomAttr, WindowFrame, RectArea,
CreateWmdow, AutoRestoreProc,

. FROM DMEntryForms IMPORT FormFrame, DefltUse, -

Writelabel, IntField, CheckBox, UseEntryFom,
RadiocButtonlID, Radj.oButton, DefineRadioButtonSet;

FROM DMWindowIO .. IMPORT EraseContent, SetPen, WriteString, Writelnt,

WindowFont, FontStyles, FontStyle, SethdowFont,
CellWJ.dth, CellHe:Lght, :

CONST
TheText = "T:Lme has come, the walrus said.."

i ?irstMenu: . Menu;
WriteComm: °~ Command;-
. ChangeComim: "Command;
TheWindow: = Window;
CharHeight: © INTEGER

. Ve

Bold, Italic, Underlined: BOOLEAN

PROCEDURE WriteText;
VAR .
i, 3j: INTEGER;
BEGIN

EraseContent; o

SetPen(20, 120); WriteString(TheText), . ’

SetPen(10, " 50); WrJ.teStrlng(“CellWidth CellHe:Lght" Y:

_ SetPen(10, 30), Wr:l.teInt(CellWJ.dth(), 7), Wr:.teInt(CellHeJ.ght (), 11),
- END WriteText; .

PROCEDURE SetTextAttributes;

VAR

£ f s - FormFrame,
oks : BOOLEAN;
Font ID' WindowFont;
"FontButtons: RadioButtonID;
Style: FontStyle; .

. GenevaRB: RadioButtonlID; .
‘MonacoRB: . = RadioButtonID; °
ChicagoRB: RadioButtonID; -
NewYorkRB: RadioButtonlD;

22

"y

by

B

BEGIN
IntField(2, 2, 4, CharHeight, useAsDeflt, 0, 30000 };
WriteLabel(2, 7, "Font size");

DefineRadioButtonSet (FontButtons);
RadioButton(GenevaRB, 4, 2, "Geneva");
RadioButton (MonacoRB, 5, 2, "Monaco");
RadioButton(ChicagoRB, 6, 2, "Chicago");
RadioButton (NewYorkRB, 7, 2, "NewYork"):;
FontButtons := ChicagoRB;

CheckBox (4, 20, "bold", Bold);
CheckBox(5, 20, "italic", Italic);
CheckBox(6, 20, "underlined", Underlined);

ff.x := 40; ff.y := 40; ff.lines := 9; ff.columns := 40;
UseEntryForm(f£f, ok);

IF ok THEN
Style := FontStyle{};
IF Bold THEN
INCL(Style, bold);
END;
IF Italic THEN
Style := Style + FontStyle{ italic }; _ (* alternative way *)
END;

IF Underlined THEN ‘
INCL(Style, underline);
‘END; - 3
IF FontButtons = GenevaRB THEN
FontID := Geneva;
ELSIF FontButtons = MonacoRB THEN
FontID := Monaco;
ELSIF FontButtons = ChicagoRB THEN
FontID := Chicago;
ELSIF FontButtons = NewYorkRE THEN
FontID := NeéwYork;
END; . ‘
SetWindowFont (FontID, CharHeight, Style);
END; :
WriteText;
END SetTextAttributes;

PROCEDURE JUStQUlt(VAR ReallyQuit: BOOLEAN);
BEGIN

ReallyQuit := TRUE;
END JustQuit;

PROCEDURE MakeWindow;
VAR '
Frame: WindowFrame;
BEGIN
WITH Frame DO
X tmi 5070y 2= 50
w := 450; h := 250;
END;
Createrndow(TheWindow, FixedLocation,
WithoutScrollBars, WithoutCloseBox, WlthoutZoomBox,
bottomleft, Frame, "Font Test", AutoRestoreProc);
END MakeWindow; - 3

PROCEDURE MakeMenuBar;
BEGIN
InstallMenu(FlrstMenu, "Fonts&Styles",‘enébled Yo
InstallCommand (FirstMenu, WriteComm, "Write text",
WriteText, enabled, unchecked);
InstallCommand(FirstMenu, ChangeComm, "Change text attributes ...",

SetTextAttributes, enabled, unchecked);

23

InstallQuitCommand("Quit", JustQuit, OC);
END MakeMenuBar;

BEGIN
CharHeight := 12; ;
Bold := FALSE; Italic := FALSE; Underlined := FALSE;

MakeMenuBar;
MakeWindow;
WriteText;
RunDialogMachine;
END FontStyleTest.

r

& Fonts&Styles

Time has come, the walrus said..

CellWidth CellHeight
11 <23

] FontsoStyles

Font size

(O Geneva @kbold'

(O Monaco [italic
QO Chicago [J underlined
@® NewYork

()

24

e

irs)

.

© MODULE PaintModes;

B mm,

*
* Watch the J.nterest:mg ‘effects when you paint over existing patt:erns ’
* (paint the stripes first, then select "test paint...").. :
* Also try the combination of the "invert" mode w1th multiple pamtmg of
* the same lines and pattems. : .

FROM DMMaster - IMPORT RunDJ.alogMach:me, . |
FROM DMMehug - -~ IMPORT Menu, Gommand, Separatcr, AccessStatus, Marking, S

: InstallMenu, InstallCommand, InstallQu:.tConmand, ’

FROM DhEntryForms IMPORT FomlFram-, UseEntryFom, WriteI.abel, .
. Rad:.oButtonID, RadloButton, DeflneRada.oButtonSet,

“FROM Dmindow_s." IMPORT Window, WindowKind, ScrollBars, WFFixPoint,

CloseAttr, ZoomAttr, ‘WindowFrame, RectArea,
: CreateWmdow, AutoRestoreProc,

- FROM DMWindowIO IMPORT GreyContent, Pattern, pat, Pathode, SetMode, _

EraseContent, ‘SetPen, WnteStrJ.ng, .
Dot, LJ.neTo, Area, Circle; .-

FROM DMLanguage . IMPORT Language, SetLanguage,

© FirstMenu: :Menu;
. SetModeComm: Command;

.. PaintComm: Command;

- StripesComm: Command;

~ ClearComm: . Command;

TheWindow: . - . Window;.'

- BigFrame: WindowFrame; |

CurrentPathode Pathode

PROGEDURE SetPaa.ntMode,

ModeButtcns' Rad:l.oButtonID°)
ReplaceRB: = RadioButtonID; -

PaintRB: ° ‘RadioButtonID;
_InvertRB: - RadioButtonID;
EraseRB:. = RadioButtonID; .
££: , ' FormFrame;
ok: . BOOLEAN;
. BEGIN

'ff X i= .40; ff.y 3= 100; ff.lines := 9; £f. column»s. = 40; .

Wr:.teLabel(2, 2, "Select the, pamt/wr:.te mode "):
DefineRadioButtonSet (ModaButtons)z -
RadioButton (ReplaceRB, 4, 3, "Replace")

"..RadJ.oButton(PaintRB, 5, 3, “Paint - (OR)"):
"RadioButton(InvertRB, 6, 3, "Invert (XOR)" }; -

" RadioButton(-EraseRB, 7,3, “"Erase");.. -

CASE CurrentPaintMode OF - . =~

. replace: ModeButtons := ReplaceRB; |’

paint: ModeButtons := PaintRB; |-
"invert: ModeButtons := InvertRB; |
erase: ModeButtons := EraseRB; |

) UseEntryForm(£, ok);

25

' Tests and .shows the usé of the paint modes provided by the Dialog Machine.

O

-

R

IF ok THEN- ' o B o i
IF ModeButtons = ReplaceRB THEN C ‘ . I ' . . o
_ . CurrentPaintMode := replace;
ELSIF ModeButtons = PaintRB THEN o
CurrentPaintMode := paint;] -
ELSIF ModeButtons = InvertRB THEN : :
_CurrentPaintMode := invert; .
ELSIF ModeButtons = EraseRB THEN
O.lrrentPathode := erase;
- END;
ASetMode(CurrentPa:.ntMode):) o N
END SetPaJ.ntMode o s . : - .

- 'PROCEDURE DrawStrJ.pes,
.'OONS'I‘
) StripWidth = 30,
. VAR)
* + . Strip: RectArea; S : o
' WITH Strip DO .) . o .
:="0; y':= 0; S . S : .
:= StripWidth;) ’ . v
1= BJ.gFrameh,' i e . . . : .
: Area(Strip, pat[dark]); ' ; : - : . ‘ < : ’
Strip.x := Strip.x + 2 * StrJ.pWJ.dth, .
Area(Strip, pat[darkGrey] }; ‘
;Strip.x := Strip.x + 2 * Strlledth, .
Area(Strip, pat[grey]): :
Strip.x := Strip.x + 2 * StripWidth; _ ' S C- . .
~ Area(Strip, pat[lightGrey]); : L - : : e
" Strip.x := Strip.x + 2 * StripWidth; A S ‘ : ' o <L
Area(Strip, pat[light]); - - : o
Strip.x := Strip.x + 2 * StrlpW:Ldth,'
Area(Strip, pat[dark]); : e
END DrawStrlpes, . .

'b‘t%

L IR
T~

o

Y ta

.PROCE‘.DURE Pa:l.nt, . o » S - . : § oL
T ie - INTEGER;
GreyBox: RectArea;
BEGIN '
SetPen(20, 120);.
_erteStrmg("Test of ‘the four pa:.nt modes")'
SetPen(10, 10); - .
""FOR'i-:=1 TO 200 DO .
. Dot (2*i,.-1i); '
END; -
. SetPen(20, 20);
LineTo(20, 230);
LineTo(200, 230 }); -
" LineTo(200, 20);
- 'LineTo(20, 20);
: C:chle(100, - 100, 40, TRUE, pat[l:LghtGrey]),
WITH GreyBox DO
x :=10; y := 180;
W= BigFrame w_~2‘0,° h := 40;
- END;
Area(GreyBox, pat[grey]),
END Paint;

PROCEDURE MakeW:mdow,
" BEGIN ‘
WITH BigFrame DO
x = 50, y = .50;

w := 450; h := 250;
END; _
CreateWindow(TheWindow, FixedLocation,
WithoutScrollBars, WithoutCloseBox, WithoutZoomBox,

: bottomLeft, BigFrame, "Test", AutoRestoreProc);
END MakeWindow;

PROCEDURE JustQuit (VAR ReallyQuit: BOOLEAN);
BEGIN g

ReallyQuit := TRUE;
END JustQuit; :

PROCEDURE MakeMenuBar;

BEGIN
InstallMenu (FirstMenu, "PaintModes", enabled); !
InstallCommand (FirstMenu, SetModeComm, "Select paint mode ...",

SetPaintMode, enabled, unchecked);
InstallCommand (FirstMenu, StripesComm, "Draw stripes",
DrawStripes, enabled, unchecked); =
‘InstallCommand (FirstMenu, PaintComm, "Test paint and write",
Paint, enabled, unchecked);
InstallCommand (FirstMenu, ClearComm, "Clear window",
EraseContent, enabled, unchecked);
InstallQuitCommand("Quit", JustQuit, OC); :
END MakeMenuBar;

BEGIN A
CurrentPaintMode := replace;

= SetLanguage (English);

5 MakeMenuBar;
MakeWindow;

s . RunDialogMachine;

= END PaintModes.

& PaintModes

fiaint modes

27

28

MODULE MouseTest;

(*

* * Demonstrates and tests some basic mouse functions of the

* Dialog Machine.
*)

FROM DMMaster IMPORT
FROM DMMenus IMPORT
FROM_DMWindows IMPORT

FROM DMWindowIO IMPORT

VAR
FirstMenu: Menu;

StartComm: Command;
~ StopComm: Command;

RunDialoQMachine,‘DialogMachineTask;

Menu, Command, InstallMenu, InstallCommand,
AccessStatus, Marking, InstallAliasChar,
ChangeCommandText, InstallQuitCommand;

Window, WindowKind, ScrollBars, WFFixPoint,
CloseAttr, ZoomAttr, WindowFrame, RectArea,
CreateWindow, DummyRestoreProc;
GetCurMousePos, RectClicked, SetPos,
WriteString, Writelnt, GreyContent, pat, Axea,

TheWindow: Window;
GreyBox: RectArea;

MonitoringIsOn: BOOLEAN;

PROCEDURE MonitorMouse;

VAR :
MouseX, MouseY: INTEGER;
Counter: INTEGER;
BEGIN

MonitoringIsOn := TRUE;

Counter := 0;

WHILE MonitoringIsOn DO
GetCurMousePos (MouseX, MouseY);
SetPos(3, 3); WriteInt(MouseX, 5); WriteInt (MouseY, 5);
IF RectClicked(GreyBox) THEN
SetPos(5, 3); WriteString("Mouse click");

Counter := 20;

ELSE

IF Counter > 0 THEN
DEC(Counter);

ELSIF Counter = 0 THEN
" SetPos(5; 3); WriteString(" i e
END; , :
END; -
DialogMachineTask;
END;

-END MonitorMouse;

PROCEDURE StopMonitoring;

BEGIN

MonitoringIsOn := FALSE; .

END StopMonitoring;

PROCEDURE JustQuit (VAR ReallyQuit: BOOLEAN);

BEGIN
StopMonitoring;
ReallyQuit := TRUE;
END JustQuit;

PROCEDURE MakeMenuBar;
BEGIN

InstallMenu(FirstMenu, "Mouse", enabled);
InstallCommand (FirstMenu, StartComm, "Start monitoring mouse",
MonitorMouse, enabled, unchecked);

29

InstallCommand(FirstMenu, StopComm, "Stop monitoring mouse",
StopMonitoring, enabled, unchecked ‘);
InstallAliasChar (FirstMenu, StopComm, "S"):
InstallQuitCommand("Quit", JustQuit, "Q");
END MakeMenuBar;

PROCEDURE MakeWindow;
VAR : ¥
Frame: WindowFrame;
BEGIN
WITH Frame DO
x := 50; y
w := 280; h
END;
CreateWindow (TheWindow, FixedLocation,
WithoutScrollBars, WithoutCloseBox, WithoutZoomBox,
bottomleft, Frame, "Test", DummyRestoreProc);
SetPos(2, 3); WriteString("Mouse position (X,Y)");
WITH GreyBox DO
" x :=50; y := 50;
w := 50; h := 50;
END;
Area(GreyBox, pat[lightGrey]):
END MakeWindow; :

= = 507
:= 180;

BEGIN _
MonitoringIsOn := FALSE;
MakeMenuBar;

MakeWindow; !
RunDialogMachine;
END MouseTest.

(Y Mouse

Mouse position (X,¥)
21 248

MODULE® ScrollTest;

(* e
"* This program demonstrates the use of scroll bars
*) 5 <

lFROM DMMaster IMPORT RunDialogMachine;

FROM DMMenus IMPORT Menu, Command, - InstallMenu, InstallCommand,
: AccessStatus, Marking, InstallQuitCommand;

FROM DMWindows IMPORT Window, CreateWindow, WindowKind, ScrollBars, RectArea,
CloseAttr, ZoomAttr, WindowFrame, WFFixPoint;

FROM DMWlndowIO IMPORT SetPen, LlneTo, GreyContent, pat, Area,
StartPolygon, CloseAndFillPolygon,
SetContSize, SetScrollStep, SetScrollProc,
AutoScrollProc; - .

© VAR

FirstMenu: ; Menu;
OpenWindowComm: Command;

StarWindow: Window;

PROCEDURE JustQuit (VAR ReallyQuit: BOOLEAN);
BEGIN

ReallyQuit := TRUE;
END JustQuit;

PROCEDURE DrawStar(w: Window);
BEGIN
SetPen(22, 22);
StartPolygon;
LineTo(43, 32);
LineTo(56,.20);
LineTo(52, 38)
LineTo(70, 50)
LineTo(53, 50);
LineTo(47, 66);
)
)
)
)

. we wa

LineTo (40, 50

LineTo(20, 50

LineTo(32, 40

LineTo(22, 22

CloseAndF;llPolygon(pat[lightGrey]);
END DrawStar;

N Ne S Se oSa

PROCEDURE MakeWindow;

VAR
Frame: WindowFrame;
ContentRect: RectArea;
BEGIN
- WITH Frame DO ‘
x := 20; y := 20;
w := 200; h := 200;
END;

CreateWindow(StarWindow, GrowOrShrinkOrDrag,
WithBothScrollBars, WithCloseBox, WithZoomBox,
bottomleft, Frame, "A star is born", DrawStar);

WITH ContentRect DO

X im 07y cw 0
w := 300; h := 300;

SetContSize (StarWindow, ContentRect);
SetScrollStep (StarWindow; 50, 10 };

31

SetSdrollProc(StarWindow, AutoScrollProc);
END MakeWindow;

PROCEDURE MakeMenuBar;

BEGIN °] :
InstallMenu(FirstMenu, "ScrollTest", enabled);
InstallQuitCommand("Quit", JustQuit, 0C);

END MakeMenuBar;

BEGIN
MakeMenuBar;
MakeWindow;
RunDialogMachine;
END ScrollTest.

r

% ScrollTest

R str is born

32

MODULE EFDemo;

(* .
* Demonstrates the use of EditFields’

‘* ‘Note that the Dialog Machine automatically adds a menu entry (the quit
* command) ‘because without it the program could not be terminated.
*) i

FROM DMMaster IMPORT InitDialogMachine, RunDialogMachine;

FROM DMWindows IMPORT Window, WindowKind, ScrollBars, WFleP01nt
CloseAttr, ZoomAttr, WindowFrame,
CreateWindow, DummyRestoreProc;

FROM DMEditFields IMPORT EditItem, StringField, PushButton, GetString,
ScrollBar, Direction, IsReal;

FROM DMWindIO IMPORT SetPos, WriteString, WriteReal;
VAR
. TheWindow: Window;
StringEF: EditItem;

PressMeButton: EditItem;
HoriScroller: EditItem;
VertiScroller: EditItem;

PROCEDURE DisplayEFContents;
VAR :)
- CurrentContents: ARRAY[0..21] OF CHAR;
BEGIN
o
* fetch the contents of the string field
i)
GetString (StrlngEF CurrentContents) ;
(*
* erase what was previously there and display the current contents
A}
SetPos(2, 3); WriteString(" . vy
SetPos(2, 3); WriteString("Field contents: '");
‘WriteString(CurrentContents }; erteStrlng(WIS G
END DisplayEFContents; :

PROCEDURE DisplayHoriScrollValue;

VAR
curVal: REAL;

BEGIN : !
SetPos(2, 3);- WriteString(3 L

SetPos(2, 3); WriteString("Scroll bar:");
IF IsReal (HoriScroller, curVal) THEN
WriteReal (curVal, 10, 2);
END;
END DisplayHoriScrollValue;

PROCEDURE DisplayVertiScrollValue;
VAR 3
curVal: REATL;
BEGIN
SetPos(7, 38);
IR IsReal (VertlScroller, curVal). THEN
WriteReal (curVal, 6, 2);
END;
END DisplayVertiScrollValue;

PROCEDURE AddEditFields;

BEGIN d :
StringField(TheWindow, StringEF, 20, 50, 7, "Hallo!");
PushButton (TheWindow, PressMeButten, 60, 100, 10,

"press me", DisplayEFContents);
ScrollBar(TheWindow, HoriScroller, 200, 100, 120, horizontal,
0.0, 15.0, 0.2, 2.0, 5.0, DisplayHoriScrollValue);
ScrollBar (TheWindow, VertiScroller, 360, 20, 100, vertical,
-1.0, 1.0, 0.05, 0.5, 1.0, DisplayVertiScrollValue);
END AddEditFields; ‘

PROCEDURE MakeWindow;

VAR
Frame: WindowFrame;
BEGIN
WITH Frame DO
' X =G () RO ()
w := 400; h := 180;
END; i

CreateWindow(TheWindow, FixedSize,

WithoutScrollBars, WithoutCloseBox, WithoutZoomBox,
bottomLeft, Frame, "Test", DummyRestoreProc);

END MakeWindow; s

BEGIN
InitDialogMachine;
MakeWindow;
AddEditFields;
RunDialogMachine;

END EFDemo.

-

Scroll bar:

34

F

MODULE DragZoom;

(*

* This sample Dialog Machine program shows the use of

*)

* the dragging mechanism and how to display predefined pictures.

FROM DMMaster IMPORT RunDialogMachine, InstallMouseHandler, MouseHandlers;

FROM DMSystem IMPORT ScreenWidth, ScreenHeight, MenuBarHeight;

FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking,
InstallMenu, InstallCommand, InstallQuitCommand;

FROM DMWindows IMPORT Window, WindowKind, ScrollBars, WFFixPoint,
CloseAttr, ZoomAttr, WindowFrame, RectArea,
CreateWindow, AutoRestoreProc;

FROM DMWindowIO IMPORT DisplayPredefinedPicture, EraseContent, SetPen, LineTo,
v GetCurMousePos,Drag, SetPos, WriteString, Writeln;

CONST p 1
PictWidth = 125; (* values provided by the DMResMover *)
PictHeight = 73;

PictID = 777;

PictFileName = "Fish";

VAR
FirstMenu: Menu;
ClearComm: = Command;
ResetComm: Command;

TheWindow: Window;

StartX, StartY: INTEGER; (* start coordinates of the selection rectangle *)

PROCEDURE Min (a,b: INTEGER): INTEGER;
BEGIN ;
IF a < b THEN
RETURN a
ELSE
RETURN b
END;
END Min;

PROCEDURE DrawRect (MouseX, MouseY: INTEGER);

BEGIN
SetPen(StartX, StartY);
LineTo(StartX, MouseY);
LineTo(MouseX, MouseY);
LineTo(MouseX, StartY);
LineTo(StartX, StartY);
END DrawRect;

VAR
r: RectArea;
BEGIN
WITH r DO .
X := Min(StartX, MouseX);

PROCEDURE DrawZoomedPicture (MouseX, MouseY: INTEGER);

(* set (x,y) to lower left corner *)

35

:= Min(StartY, MouseY);
:= ARS(StartX — MouseX); (* fit pict size to rectangle *)
:= ABS(StartY — MouseY);

P EN

END;
DisplayPredefinedPicture(PictFileName, PictID, r);
END DrawZoomedPicture;

PROCEDURE MakeSelection(w: Window);
BEGIN
GetCurMousePos (StartX, StartY):;
Drag(DrawRect, DrawZoomedPicture);
END MakeSelection;

PROCEDURE WriteExplanations;
BEGIN
SetPos(2, 1);
WriteString(" Define a rectangle by dragging the cursor"); Writeln;
WriteString(" along its diagonal with the mouse button pressed."); Writeln;
Writeln;
WriteString(" The picture will be redrawn and scaled to fit the rectangle.");
END WriteExplathions;

PROCEDURE ResetPicture;

- VAR :
r: RectArea;
BEGIN

WITH r DO
X := (ScreenWidth() — PictWidth) DIV 2; (* center picture %)
y := (ScreenHeight () — MenuBarHeight () — PictHeight) DIV 2;
w = 0; : (* no scaling *)
h := 0;

END;

EraseContent;

WriteExplanations;

DisplayPredefinedPicture(PictFileName, PictID, r);
END ResetPicture; :

PROCEDURE JustQuit (VAR ReallyQuit: BOOLEAN) ;
BEGIN

ReallyQuit := TRUE;
END JustQuit;

PROCEDURE MakeWindow;
VAR
Frame: WindowFrame;
BEGIN
WITH Frame DO
x = 0; y := 07
w := ScreenWidth(); h := ScreenHeight ()} — MenuBarHeight();
END;
CreateWindow (TheWindow, FixedLocation,
WithoutScrollBars, WithoutCloseBox, WithoutZoomBox,
bottomleft, Frame, "Drag & Zoom", AutoRestoreProc);
. END MakeWindow;

PROCEDURE MakeMenuBar;

BEGIN
InstallMenu (FirstMenu, "Drag&Zoom", enabled);
InstallCommand(FirstMenu, ClearComm, "Clear window contents",

36

>

i Erasecontent, enab].ed, unchecked), . .
InstallConmand(FirstMenu, ResetComm, "Redraw picture in or:.gmal s:Lze"
' . ResetPicture, enabled, unchecked); . :
InstallQu:.tOommand("Qu:Lt" JustQuit, OC);

. BEGIN

- MakeMenuBar; .

MakeWindow;

ResetPicture;"

InstallMouseHandler (WmdowContent, MakeSelectJ.on),
RunDialogMachine;

.- END DragZoom.

r ~'6 Dragt?Zoom

Define a rectangle by dragging the cursor . -
along its diagonal w1th the mouse button pressed. ‘

The mcture wnl be redrawn and scaled t

37

.
b

