
Copyright © IFAC Simulation of
Control Systems, Vienna, Auslria, 1986

SIMULATION AND COMPUTER AIDED

CONTROL SYSTEM DESIGN IN ENGINEERING

EDUCATION

A. FischIin*, M. Mansour, M. Rimvall and W. Schaufelberger

Department of Automatic Control & Industrial Electronics, Swiss Federal Institute
of Technology, ETH-Ziirich, ETH-Zentrum, CH-8092 Zurich, Switzerland
*alw: Department of Phytomedicine, Swiss Federal Institute of Technology

Abstract. A wide range of possibilities exists for the use of computers
in the teaching of control system design and simulation. Several approa­
ches such as the use of program packages, single purpose programs or com­
plete environments are described in the paper. Experience gained from
teaching with these methods is summarized, and recommendations for forther
improvements are given.

Keywords. Computer Aided Control System Design. Education. MATLAB envi­
ronment. Simulation. Teachware for control education.

INTRODUCTION

Non scholae, sed vitae discimus.
[Not for the school, for life do we learn.]
Epistolae morales

In the last few years, microcomputers have become
economically so attractive that many educational
institutions started to invest into their employ­
ment. This is especially true for simulation which
has a long tradition in using computers.

There exist many approaches. They range from the
programmed learning, dating back more than one de­
cade before the era of personal computing, to
courseware supported learning by completely free
exploration of unknown structures. Although, thanks
to personal computing, programmed learning has gone
through some sort of a reincarnation recently, we do
not believe that this approach is fruitful in the
field of simulation. On the contrary! Simulation of­
fers almost for any discipline the possibility to
replace real-world, complex, experimental set-ups
by simple and cheap models running on a microcom­
puter. Students may explore these models in place of
the real systems in any way they wish: no risks are
associated wi th such experiments, even if the begin­
ning student should know almost nothing about the
real system. Hence, not only is simulation a learn­
ing subject, but it is also the means to learn a sub­
ject. Because of its similarity to a real-life si­
tuation, in contrast to programmed learning, the
student profits from opportunities to acquire
skills useful even beyond just the learning situa­
tion. Moreover, the motivation of students may be
increased by demanding less of cognitive in place of
intuitively appealing, unforgettable personal expe­
rience.

In Computer-Aided Control Systems Design (CACSD),
the use of CACSD-packages as well as simulation
tools let us develop and test a new design for
consistency up to any level of detail before having
to implement it within the costly, real-life situa­
tion. However, two learning goals have to be clearly
distinguished: The design of control systems for
which appropriate software packages are just some
means which may be employed without a detailed

!)I

understanding of the underlying techniques and the
detailed study of the software tools themselves and
their employment from the perspective of the de­
sign of control systems. Both goals deserve appro­
priate attention and the development of specific
software in order to support them optimally. In
the first situation, the utilized techniques are
typically hidden from the student so that he or she
can concentrate on the main subject, the design of a
control system. In the second learning situation,
the techniques and algorithms must not be hidden, on
the contrary, the courseware would become meaning­
less without their emphasis. The only purpose the
simulated system serves is to provide a model, which
is appealing to the student.

The distinction between the two learning goals des­
cribed above is much more fundamental than it might
appear at the first glance. Students of electrical
engineering remain at our university (swiss Federal
Institute of Technology Zurich, ETHZ) for a minimum
of 4 years. Spending much time and effort on train­
ing particular techniques, rather than basic prin­
ciples, offers students the advantage of being able
to start working in a professional position right
after having finished their studies. On the other
hand, it has the danger that the acquired knowledge
quickly becomes obsolete. Especially when consid­
ering the current speed of technological develop­
ment in the era of personal computing, these two
goals become Skylla and charybdis.

The students have to know the widely used software
packages commercially available. On the other hand,
they also have to gain a thorough understanding of
the basic principles in order to be prepared when
the next software generation becomes available on
the market.

Emphasis should be set on the few well-established
classics, such as MATLAB. They are worth learning
the idiosyncratic peculiarities.

Another criteria to select a software package is its
power to represent a whole class of tools. Given
that the functions of such a tool serve a long-last­
ing purpose, even if the specific product does not
survive, at least the corresponding family of similar

52 A. Fischlin f'I al.

programs might. Having once mastered the prin­
ciples, learning to use a new product of the same
program family will be a minor task. Consequent­
ly, particular software used in education may be
favoured for its didactic merits, demonstrating
much clearer what its underlying principles are,
over other pieces of software despite their current
popularity among professional practitioners.

Attempts to minimize efforts to learn software idio­
syncraciecs lead to design problems of user inter­
faces: Syntax, usage, and programming of operating
systems; command-driven versus menu-driven soft­
ware; graphics, i.e. graphical output and graphical
input via a pointing device, e.g. a mouse; and the
overall behavior of the application software, the
so-called user model.

Most conventional operating systems have first to be
learned before any computations can be performed.
Typically, they are full of illogical idiosyncra­
cies, forcing the user to devote intolerable large
portions of his intellectual capacity to th� debug­
ging of meaningless, syntactical errors.

Command-driven software is much more difficult to
master than menu-driven software featuring pop-up
or pull-down menus. Although command-driven soft­
ware can be used more efficiently if the user is
proficient, menu-driven software can even be of much
value to the versatile user when he is accessing
many different computer systems.

Any program adopts a particular "user model". It
determines the general behavior of the program,
not dealing wi th aspects determined by the
application-specific algorithms. Using more than
one computer system and more than one program, the
case with most of our students, means that the user
model also changes. Again this represents an
unnecessary and time-consuming burden for the
student. Hence, many computer-based control system
design techniques and tools can not be taught to the
students, simply because the time necessary to learn
the overhead cannot be afforded. This holds in
particular for students of system theory for whom
the emphasis lies not on computer techniques but on
mathematical solutions to control system design
problems.

Finally, graphical output should be featured when­
ever and wherever possible, since what holds in gen­
eral is true even more so for computers: one graph
can replace a thousand words. In learning, this is
particularly crucial.

In our paper, we present some of the approaches with
which we have experimented. Some of these allowed us
to gain experience over a period of several years.
They address many of the problems mentioned: the
user shell MIDGET, which runs on top of the VAXfVMS
operating system, addresses the operating system
problem. The "Dialog Machine" is an approach to
offer a general user model; some courseware programs
featuring simulation just as a vehicle to purport an
independent message, such as a method to design a
controller, address the issue of software tailored
to didactical needs. Finally we discuss our expe­
rience in the use of command-driven, general purpose
research tools, CTRL-C and MATLAB, for educational
purposes, addressing the issue of difficult to
learn, but real-life software. Advantages and dis­
advantages of the various approaches are discussed,
experience presented, and an outlook for future dev­
elopments is offered.

OVERVIEW OF APPROACHES AND
SOLUTIONS

As no universal simulation/CACSD software solving
all simulation problems exists (and probably never
will exist), a considerable number of different

software packages for simulation and control system
design are available at the ETH. Table 1 lists the
most commonly used packages at the Dept. of Auto­
matic Control (it is an updated version of a list
from Mansour and co-workers, 1984) . Note that a
distinction is made between packages used as tools
only, and packages developed and/or complemented at
the ETH.

1) ACSL (Advanced continuous Simulation Language).
An easy-to-learn, well-structured interactive
simulation language for continuous and sampled
data systems. ACSL includes features like mac­
ros, procedurals, and non-linear functions. In
the interactive mode, the user can change model
parameters, perform simulations using terminal
color graphics, as well as analyze a simulated
system through its Jacobian matrix and eigen­
values.
Available from Mitchell & Gauthier Associates,
Inc., ACSL is presently the most used simulation
language at the department.

2) COSY /SYSMOD (COmbined SYstems, SyStem MODel­
ling). simulation language for combined contin­
uous and discrete systems, offers a high-level
input language.
The syntactical language definition of 'COSY has
been defined using a general-purpose parser. At
present, the COSY definition describes a state­
of-the-art simulation language with a structur­
ability and versatility not available in any
other languages. Preprocessor and runtime sys­
tem are presently not available.
Developed at our institute; a subset of COSY
(SYSMOD) has been implemented by Systems Design­
er Ltd. on command by the British Ministry of De­
fence (Baker and Smart, 1983) .

3) DARE-INTERACTIVE (Differential Analyzer RE­
placement). Extension to DARE-P, makes the lan­
guage interactive in a fashion similar to that
of DARE-ELEVEN. New features include color gra­
phics, a run-time display, split-screen gra­
phics, modules for sensitivity analysis, replic­
ation and batch, and trend analysis.
DARE-INTERACTIVE will in the future also pro­
vide access to a general data-base.
Developed at the institute from DARE-P; runs
under VAXjVMS.

4) GASP-V/INTERACTIVE. Interactive version of the
GASP-V package. Through the use of MIDGET and an
interactive postprocessor from the DARE family,
the user can enjoy a very flexible version of the
powerful GASP-V package.
GASP-V/I was developed at our institute; it runs
under VAX/VMS.

5) SDL (Simulation Data Language). Portable rela­
tional data base especially adapted to storage
and retrieval of data from simulations. SDL can
be easily connected to any simulation program
providing for a FORTRAN interface.
Developed by Pri tsker and Associates, Lafayette,
IN., SDL is used in the second part of the simul­
ation lecture (discrete simulation) in connec­
tion with SLAM-II.

6) SIMNON. Interacti ve simulation program for con­
tinuous and sampled data systems. Features very
natural model descriptions as well as an easy­
to-use dialog form. One of the first packages to
include terminal graphics to support interactive
analysis/synthesis/optimization.
Developed at Lund Institute of Technology (LTH),
Lund, Sweden. Runs under VAXjVMS.

7) SLAM-II. Batch-oriented simulation language
using a PERT network description of discrete mo­
dels to be simulated. As SLAM-II is a superset
of GASP-IV, it ca� also be used for combined con-

Simulation and Computer Aided Control System Design 53

tinuous/discrete simulation with only part of
the system described by a network.
SLAM-II was developed by Pritsker and Associa­
tes. It is presently used in the second part of
the simulation lecture (discrete simulation) .

8) STELLA. Ikon-oriented simulation package incor­
porated into the Macintosh environment. Although
the present version of STELLA is much too
rudimentary to be used for large simulations,
its extreme simplicity makes it interesting for
small student exercises.

TABLE 1: CACSD and simUlation tools available at
the ETH ZUrich

Use at different levels I
SDlULA- T I T Lab. Stud. I Grad. Use in I TIOH 5+6 1 7+8 Proj ' Iprog• Res.

ACSL 0 2 0 2 1 2
COSY/ *
SYSMOD - - - 2 0 2
DARE-INT* 0 0 2 0 0 1

.

DSL/VS

I
0 I 1 0 0 0 1

FORSIM 0 0 0 1 0 1
GASP-V/I* 0 0 0 0 0 1

·SDL 0 1 0 1 I 0 I 1 I SIMNON 1 1 0 0 1 0
SLAM-II 0 2 0 1 0 1
STELLA 1 1 0 0 0 1

CACSD

CTRL-C 2 2 0 2 2 2
IMPACT * - - - 2 0 2
MATLAB 0 0 1 0 1 2
PC-MAT-

LAB 0 0 1 0 1 1

TOOLS

DIALOG-
MACHINE * 2 0 0 1 0 2
MIDGET* 2 2 2 2 2 2
SPECIAL-
PURPOSE* 2 1 1 1 0 0

2: much used; 1: used; 0: hardly ever used; -: not
applicable/not available; *: developed at ETH;
T: term.

Although there is a large common area between the
fields of simUlation software and CACSD software,
the two are treated separately in this paper. Some
of the following CACSD systems also contain simula­
tion features.

1) CTRL-C. Commercial package extending the origi­
nal MATLAB program to a full control-environ­
ment. Flexible graphics, control algorithms and
function/procedure capabilities have been added.
Available from Systems Control Technology, Inc. ,
California.

2) IMPACT. The newest CACSD project at our insti­
tute. IMPACT is conceptually based upon MATLAB,
but implemented in Ada@. IMPACT supports a mul­
titude of data-structures needed in control
theory, (e. g. polynomial structures and system
descriptions) , and provides a dual-mode command­
driven/question-and-answer-driven interactive
interface for easy use.

3) MATLAB. Developed at the Univ. of New Mexico,
MATLAB provides an easy-to-use. interactive in-

terface to matrix manipulation algorithms of
LINPACK and EISPACK.

4) PC-MATLAB. Commercial PC-version of MATLAB im­
plemented in C. It extends MATLAB in the same
areas as CTRL-C, and fully utilizes the 8087 co­
processor to make PC-MATLAB almost as fast as
the original MATLAB on e. g. a VAX-750. Available
from The Mathworks, Inc. , MA.

Some universal algorithmic/operational software is
used on many different simulation/CACSD packages.
All the here listed tools have been developed at the
institute, and are treated in detail in other parts
of this paper.

1) DIALOG MACHINE. General Purpose graphical and
dialog software to be used during the implemen­
tation of interactive software on a modern,
single-user work station.

2) MIDGET. General purpose environment facilitat­
ing the use of larger (simulation) packages.

3) SPECIAL PURPOSE PROGRAMS. Stand-alone programs
developed to be used in laboratory or classroom
exercises to solve particular problems •

STUDENT ENVIRONMENTS UNDER MIDGET

As we have seen in the first part of this paper, a
mul ti tude of software packages are available for
simUlation and CACSD during exercises and/or labo­
ratory work. However, their employment is unfortu­
nately not as simple as "go to computer A, start
package B, and solve problem C". Although the aver­
age student hopefully knows from the lecture how to
solve problem C, he probably knows neither

- how to use computer A, nor
- how to start and work with package B.

Consequently, before any exercise using a (for the
student) new computer and/or software package, much
time must be spent on computer introductions.
Thereby, the introduction to the used package
itself may be well employed when it also gives the
student insight into the techniques utilized by the
package. Differently, the introduction to the oper­
ating environment of the package is often totally
irrelevant to the exercise and subject matter. This
can lead to an extensive loss of time. Generally
speaking, there are three approaches to this prob­
lem:

Introduce the principles and basic commands of
the available operating system to the students,
so that they can work independently on that par­
ticular computer.

Provide the students with a step-by-step list of
operating system commands to be entered with no
or few explanatory comments.

Incorporate the needed operating system commands
into a simple-to-use user environment ("user­
shell") to hide the operating system.

The first, conventional approach is the most ineffi­
cient one, yet probably the most wide-spread one. As
every consistent subset of a conventional operat­
ing-system is likely to be quite substantial, much
time would have to be spent before the student can
work independently in a fairly efficient manner.

In some cases, it is better to let the students
blindly copy a prescribed, but unexplained, list of
commands. However, this method is only employable
where a simple application package is to be used and
few actions involving the operating system must be
taken. Otherwise, the slightest error by the stu­
dents will leave him totally confused.

A. Fischlin 1'1 al.

In our view, the best approach is to provide the
student with an adapted environment, and thereby to
shield him from the intricacies of the operating
system (except, of course, in lectures on system
software, etc.) . Such an environment must on one
hand be simple enough to learn and use to warrant
its implementation time, on the other hand, it must
let the student perform all necessary actions (or we
are back at square one again) . These two require­
ments are at a first glance contradictory, yet the
existence of a general environment or a tool for
creating new environments (an "environment environ­
ment") would put us on the right track.

At the ETH, we have experienced with all three ways
of presenting "conventional" computers to the stu­
dents (typically VAX/VMS, CDC or IBM-mainframe en­
vironments) . We employ the first two methods prim­
arily during larger projects where there is ample
time, or when the utilization of the employed pack­
age requires few operating system commands to be
entered (e. g. invoking "matrix-environments") . For
the access to more complex packages during,shorter
exercises, we try to take the third approach.

In a first generation of simulation-package envi­
ronments implemented at the institute some four
years ago, the student still worked with the normal
operating system. To assist him, we supplied a few
powerful commands hiding most of the actual system
actions taken. However, this approach was unsatis­
factory, as the student still "could take too many
wrong paths" without realizing it.

In a second generation of packages, the student ne­
ver got in contact with the underlying operating
system. He only had access to a few commands pre­
sented to him over a menu, limiting the number of
mistakes he could make and streamlining the access
to of different software packages. Although this
second generation worked very satisfactorily for
the students, the implementation time of these envi­
ronments became tremendous. Many times the students
asked a relevant "why doesn't the environment allow
me to do this?", which lead to extensions to each of
the packages. Moreover, our students became "spoil­
ed" and asked us to supply these nice environments
for more packages. It soon became clear that what we
needed was an environment for developing student
environments. Thus the idea of MIDGET was born.

MIDGET (Menu-driven Interati ve Development-system
for Generic Engineering Tasks) is a set of Pascal
and operating system programs (VAX/VMS) for the dev­
elopment and employment of software environments.
MIDGET standardizes the user interface of the dif­
ferent software environments without restricting
the kind of actions supported by these environments.
Hence, environments have been developed for very di­
verse software packages (from simulation languages
to word-processing systems) , yet the implementation
time for individual environments is short (over 80%
of the code are common to all environments and
another 10-15% are reusable between similar kinds of
environments) . Normally, a "MIDGET-manager" famili­
ar with the development system for environment as
well as the software package to be given an environ­
ment, needs 2-3 working days to construct a new en­
vironment. This as contrast to 2-3 weeks for our
initial, second-generation environments.

MIDGET is simple enough to be used after only 15-20
minutes of introduction. To prove this, let us spend
the next 15-20 lines of text explaining the prin­
ciples of a typical MIDGET environment.

In Fig. 1 you see the main menu presented to the user
by the ACSL environment (ACSL is a powerful simula­
tion language for continuous models) . In the top
third of the screen, the state of the environment is
given. In particular, the condition of "flags" (take
the value ON or OFF) are displayed and the name(s)
of the problem presently treated is given. Each of

these fields can be changed by entering correspond­
ing commands - the most important of these commands
are displayed in the middle of the screen. At the
bottom of the screen, names of further sub-menus are
displayed. These sub-menus generally contain com­
mands not needed during the first days a student
works under the environment; when needed, they get
displayed simply by giving their name. Some of the
commands (like the SELECT command choosing the name
of the model to be treated) takes parameter(s) . If
the user does not supply these parameters with the
command (in the form SELECT MYPROBLEM) , he will be
asked for the parameter value(s) . Whenever the user
is at loss, the hierarchical HELP-command gives fur­
ther assistance. contrastingly, when the user gets
familiar with the environment, he can switch the
menu OFF for faster operation.

Not only does the "reusability" of the MIDGET envi­
ronments decrease their implementation time, this'

also assists the user switching from one environment
to another (for example, the user needing ACSL for
continuous simulations and SLAM for discrete-event
simulations) . Even between environments of very
diverse software packages (such as ACSL and SLAM) , a
large section of the commands remain the same. For
example, almost all simulation environments sup­
port the commands SELECT, PROGRAM, EXECUTE and OUT­
PUT; yet the action taken as the user enters the
commands is quite different (sometimes an EXECUTE
compiles a model, another time an interpreter is
called, and a third time the action depends on the
value of a "flag") . Typically, the introduction time
for new environments is around 5-10 minutes.

FLAGS
FLAGS
FLAGS
FLAGS
DEFAULTS:
SYSPICS :

COMMANDS:

MENU - ON ACSL listing - ON
FORTRAN listing - OFF Loader map - OFF
Own main program - OFF
Analysis feature - OFF
All defaults - [CACSD. RIM. SIMl]
Selected problem - MYPROBLEM

DATA * Edit the ACSL data file (run time
commands)

DIRECTORY * List all defined ACSL problems
EXECUTE * Compile and run ACSL problems
HELP * Extensive help information
OUTPUT * Edit ACSL output file
PROGRAM * Edit the ACSL program (system

description)
SELECT * Select problem to be treated

SUB-MENUS containing further commands:
ADVANCED * Advanced commands to run ACSL
DEFAULTS * Commands to change default values
DEVICES * Commands for external devices
EDIT * Additional edit commands
FILES * File manipulation commands
SYSTEM * Commands leave current development

system

SELECT COMMAND:

Fig. 1. Main menu of the MIDGET environment to
ACSL

Somewhat surprisingly, the use of MIDGET has not
limited itself to students. Many of our colleagues
use MIDGET whenever they work with any simUlation
language (and are then at a total loss when they have
to work on a "strange" computer where they suddenly
have to "know what to do") . Except for the cases
where the user wants to modify the simUlation pack­
age itself, the use of MIDGET increases producti vi ty
without operational limitations. Moreover, the in­
stallation of MIDGET at other academic institutions
worldwide, and the development of over a dozen dif­
ferent environments indicate that our approach to
student environments for larger software packages
on machines with conventional operating systems is
sound.

Simulation and Computer Aided Control System Design 55

THE DIALOG MACHINE

The "Dialog Machine" is a software package which has
been produced as part of an authoring system under de­
velopment at the Swiss Federal Institute of Technolo­
gy Zurich (ETHZ) by the project team CELTIA (�omputer­
aided �xplorati ve Learning and �eaching wi th Interac­
tive Animated Simulation) . It has been implemented on
the Apple� Macintosh computer (S12K RAM or more) and
in its current version it consists of eleven modules
supporting pull-down menus, windows, window-related
input and output, modal dialogs, modeless dialogs,
alerts, and files. The "Dialog Machine" is an abstract
machine filtering so- called user e:vents, reating to
them whenever possible automatically and passing them
whenever necessary to handlers provided by the appli­
cation program.

The "Dialog Machine", once started, attempts to keep
control over all run-time activities of an applica­
tion program. It intercepts all events due to a user
action, the so-called user events, such as pressing
the mouse button, choosing a menu item, activating a
window, clicking an object, or dragging an object on
the screen, and reacts to them in a predefined, stand­
ard way. Only events, which cannot be treated automa­
tically by th� "Dialog Machine" are channeled through
the system to the application-specific program sec­
tions. All user events are rigorously defined and the
programmer can interface his application-specific
code to the user events in a structured way. For ins­
tance, the clicking in the front window, or the clos­
ing of a window, which does not correspond to the
choosing of a menu item, are such events. Program con­
trol is only temporarily passed to application-speci­
fic program sections. Consequently, the applica­
tion-specific software consists of a set of proce­
dures which can be called in an arbitrary sequence,
rather than of a conventional block of program state­
ments (straightline code) to be executed one after the
other (Fig. 2) .

PROGRAM CONTROL

:
· .
· .
· .
· . : Program :

module --:--+
(mai n prog.) Run:

�.
�

etc.

Application

"Oi alog : ... :----+��£)
Mac hi ne" : .. +----

�_4 ______ , ___________________ ,

Fig. 2. "Dialog Machine" and Program Control.

The "Dialog Machine" separates those program parts,
which are common to any interactive application pro­
gram from those program sections, which are applica­
tion-specific. It thus simplifies the programming
task of a typical application program SUbstantial­
ly. Furthermore, the "Dialog Machine" standardi zes
not only the appearance, but also the behavior of an
application program as far as the user dialog is
concerned, helping students to orient themselves
wi thin complex courseware and reducing the time
needed for learning to use new software.

The "Dialog Machine" can be considered as a versa­
tile software development environment featuring
consistent usage and simplified programming of mo­
dern working stations (Fischlin, 1986) .

The "Dialog Machine" consists of eleven Modula-2
library modules (DM stands for "Dialog Machine") :
DMMaster, DMMenus, DMWindows, DMWindowIO, DMModal­
Dlgs, DMModelessDlgs, DMAlerts, DMFiles, and two
auxiliary modules DMLanguage, DMConversions, plus
DMSystem (Fig. 3) .

The modules DMMaster, DMMenus, DMWindows, DMWindow-
10, and DMLanguage depend mutually on each other.
They build the core of the "Dialog Machine" and must
always be resident. The modules DMModalDlgs, DM­
ModelessDlgs, DMConversions and DMFiles can be used
in addition to the core modules. Two may even be
used completely independently of the "Dialog Ma­
chine" (DMConversions, DMFiles) . The system-speci­
fic characteristics, e. g. the screen dimensions are
provided by the auxiliary module DMSystem.

The module DMMaster is the master module maintaining
overall control of all actions, in particular user
events. User events that can be handled automatic­
ally by the "Dialog Machine" are either passed to
the other modules or module DMMaster responds to
them directly. These mechanisms are transparent to
the programmer or user. Does the user event require
some particular, application-specific response, in­
formation on the event is found within the approp­
riate module. For example, the current mouse posi­
tion is needed during dragging. Since the "Dialog
Machine" supports only dragging within a window,
this information is available from module DMWindow-
10. However, pressing a key on the keyboard is a
user event, which is not related to any particular
user interf ace ob j ect, such as e. g. a window. Hence,
information on user events of this type, e. g. which
key has been pressed, have to be taken from module
DMMaster.

The module DMMenus supports the installation and ma­
nagement of menus. Typically, application-specific
procedures are installed wi thin the "Dialog Ma­
chine" and provide the desired action when the cor­
responding menu item is chosen. All procedures for
the activation or deactivation of menus, or changing
menu texts, or checking a menu item, plus all other
similar menu management tasks are supported.

The module DMWindows provides the window manage­
ment. Several window types are supported: It is
possible to create windows with or without scroll
bars (scrolling and updating is performed automa­
tically) , with a fixed or adjustable size, with or
without a close box, at a fixed screen location or
movable, etc. Typically, a window is created by
simply calling the procedure CreateWindow, and all
other, subsequent window related tasks, such as re­
sizing, activating, or closing of a window, are left
to the "Dialog Machine" via mouse user events.

Module DMWindowIO provides graphical input via the
pointing device and textual or graphical output
based on a small set of simple coordinate systems.

Via module DMWindowIO it is possible to detect one
type of user events, i. e. the clicking within the
content of a window, and to relate them to graphical
objects of a round or rectangular shape. Further­
more, routines to drag graphical objects once their
sizing has been detected, are offered. Procedures
to determine scrolling amounts and scroll slider
positions.

The first output coordinate system of module DMWin­
dowIO supports textual output by addressing charac­
ter cells in rows and columns. A second, graphical
coordinate system is based on a two-dimensional car­
tesian coordinate system in pixel units with its

56 A. Fischlin f'I a/.

I
DMMuter tl-

M . t i l l
I

- �1n con 1"'0
- User events

I .,.
T r r-I I

DMMenus -

I
DM"'nd,,,,O

t
DMWindoW's

• Menu installation l+- • WindoW' related • WindoW'
and usage input I output managemen

I I ,. T .. T T T T
DMModalDlgs I- DMMode lessDlgs
• Input via modal • Input via mode-

dialogs less dialogs

I

T T T 'L- � T r r I I . I I I I I I I I
DMLanguage DMAlerts

-
• Language se- • Messages

lection

I

i T T
I

DMConversions DMFl1es
-

• Number to string • Sequential text
and vice versa files

I

i T
I

m DMBase
-

DMSyste

·System
objects

specific

f
- ·LoW' level (only

(public) internally used)

I

i

Fig. 3. The structure of the "Dialog Machine"

orlgln typically to the lower left corner of the
output window. Thirdly, turtle graphic routines are
offered. The fourth coordinate system is the so­
called user coordinate system, which addresses
points as pairs of real numbers. It maps any
two-dimensional cartesian coordinate system defined
in real numbers to a rectangular portion of the
current output window. It is possible to freely
switch from one coordinate system to the other. All
output is actually done with one common pen only.
Hence, the various coordinate systems are just con­
venient means to access the basic underlying output
mechanism. Moreover, conversion routines are
available and it is even possible to display a pre­
defined picture stored as a bitmap.

The modules DMModalDlgs and DMModelessDlgs provide
means to enter data. Any elementary data type, cha­
racter, integer, cardinal, and real (boolean is sup­
ported through check boxes) , may be entered. Data
will automatically be checked for syntactic cor­
rectness and for whether its value lies within a
range defined by the application. Of course, strings
can be entered j however, without any checking. Other
supported items are push buttons, sets of radio
buttons, check boxes, and scroll bars.

Module DMModalDlgs features modal dialogs. They are
characterized by the fact that once a modal dialog
has started, the user is forced into the correct
termination of this dialog. Only syntactically cor­
rect data within a predefined range can be entered,
otherwise they are re jected till correct.

Module DMModelessDlg allows to define editing fields
for any of the elementary data types and other
dialog items within an ordinary window as managed by
module DMWindows. Consequently, the user may inter­
rupt or resume the modeless dialog at any moment,
the same way as he or she may switch his attention
from one window to another.

The module DmAlerts may be used to display warning
or error messages.

The module DMFiles provides simple means to store or
retrieve data sequentially on a disk file. Files can
be searched or created by means of dialog boxes. All
elementary data types, characters, strings, inte­
gers, cardinals, or reals, may be written or read.
Several files may be accessed simultaneously.

Module DMLanguage lets define a particular language
as the current language. All modules of the "Dialog
Machine" will adjust automatically to the hnguage
chosen, and the programmer may also implement an­
other language by writing his own implementation for
this module.

Module DMConversions offers conversion routines to
convert numbers of type CARDINAL, INTEGER, or REAL
to a string or vice-versa.

Modules DMSystem and DMBase export system-specific
ob jects, such as hardware dependencies. For ex­
ample, the screen resolution is exported by module
DMSystem. Module DMBase is not to be used by the

Simulation and Computer Aided Control System Design 57

"Dialog Machine" client, it only serves the "Dialog
Machine" itself and its portability to other ma­
chines (e.g. Sun).

The "Dialog Machine" is used by importing any of the
ob jects from any of the library modules into a
program module. The importing compilation unit, a
program module, forms the base of the application to
be developed. At minimum, it must contain the
statement activating the "Dialog Machine". Hence,
the simplest, still executable program consists of
five lines only. Typically, the application module
contains a set of procedures which are called, when
the associated menu items are chosen (Fig. 2). In
addition, it contains statements installing these
procedures into the "Dialog Machine". These state­
ments are usually executed before the last statement
of the program, the statement which starts the
"Dialog Machine". Such a program module requires
compilation (plus linking, depending on the Modu­
la-2 implementation) and is then ready for execu­
tion.

The latest version 0.3 of the "Dialog Machine" has
been implemented using the newest Modula-2 imple­
mentation MacMETH (Macintosh Modula ETH]. MacMETH
was developed at theoept. of computer Science at
the Swiss Fed&ral Institute of Technology Zurich
(ETHZ) under N. Wirth, the creator of Pascal and
Modula-2 (MacMETH consists of a 1-pass compiler,
symbolic debugger, editor (displaying compilation
errors), linker respectively application maker,
loader, plus a shell to quickly switch between com­
piler, editor, and debugger or execute a program).

THE USE OF MATRIX-ENVIRONMENTS
IN ENGINEERING EDUCATION

Many of the algorithms used in control theory, and
especially those used in the time-domain, are com­
posed of simple linear-algebra primi ti ves such as
matrix operations (I/+I/, It_tl, ".", and "/"), eigen­
value operations and other matrix manipulations/de­
compositions. Another characteristic of control
theory is the habitual use of graphs and graphical
methods, particularly during frequency domain
design. Traditionally, both of these approaches
required the use of pencil and paper. With the
slide-ruler you could only draw straight lines (!),
and it gave you little assistance during matrix
operations. Not even the advent of cheap pocket
calculators helped much (although you could use the
programmable ones to calculate the points to plot by
hand). similarly, few computer CACSD programs exis­
ted, and the few existing ones were normally not
very sophisticated. At best, a CACSD program of the
1970's gave access to the most COMon linear-al­
gebra routines over an interactive question-and­
answer interface of some kind. The dialog was
totally controlled by the computer and any deviation
from the pre-programmed path was impossible (parti­
cularly distressing, when after a false numerical
input the user had to continue a meaningless conver­
sation until the computer produced some mendacious
results) •

In 1980 MATLAB (MATrix LABoratory), a new interac­
ti ve program giving access to the linear-algebra
routines of LINPACK and EISPACK, appeared (Moler,
1980). Although intended for numerical analysists,
the control community soon realized that MATLAB (or
extensions thereof) ideally suited for their needs.
MATLAB is in the public domain and soon the phrase
"the best piece of software available for 75 bucks"
(distribution cost) was coined.

However, some people wanted more and had the money
to pay for it. Therefore, soon packages derived from
MATLAB but incorporating further control-related
algorithms and the so needed graphical output sold
for $20.000 to $60.000 (coMercial price). As they
got more wide-spread and cheaper, the term matrix-

scs-e'

environments was coined and refers to all (CACSD)
packages having a userinterface similar to that of
MATLAB. Interestingly enough, almost all develop­
ments of new CACSD-packages commenced after 1981-82
based upon MATLAB in some way or another (Little and
co-workers, 1984; Rimvall & Cellier, 1985; Walker
and co-workers, 1982).

After this uninhibited praise of MATLAB, those who
do not (yet) know any matrix environment package de­
serve a short introduction:

A basic matrix-environment can be thought of as a
pocket calculator working on complex matrices ra- >_

ther than on scalars. Matrices are entered in a
straight-forward fashion using a transparent com­
mand language. For example, to interactively enter a
3.3-matrix and calculate its eigenvalues and eigen­
vectors using the freeform input format of original
MATLAB (user input bold):

<>
a=[l 3 5

7 6 5
o 0 5];

<>
[vec,val] = eig(a)

VAL =

-1. 7202 0.0000
0.0000 8.7202
0.0000 0.0000

VEC =

-0.7408 0.3879
0.6717 0.9982
0.0000 0.0000

0.0000
0.0000
5.0000

-0.4000
-2.2000

1.0000

The matrix environments are normally implemented as
stack-machines with the dimension of the different
matrices limited only by the total amount of avail­
able computer memory (and the patience of the user
entering the matrices).

Basic operations in these matrix-environments in­
clude many linear-algebra functions such as inver­
sions, transformations, and decompositions. More­
over, the user can define more complex operations on
his own by clustering primitive operations using an
interacti ve "prograMing language". Thereby, struc­
tures such as IF-THEN-ELSE, FOR-LOOPs and WHILE­
LOOPs are supported by all matrix environments, some
also let the user define functions with parameters
and local variables. The following example shows how
a function for calculating a controllability matrix
can be defined in CTRL.,C:

II [qs] = CONTROL(a,b)
[ma,na] = SIZE(a);
[Db,rub] = SIZE(b),

IF ma <> na, • • •

DISPLAY('Non-square A-matrix'),
ELSE IF ma <> mb, • • •

DISPLAY('unequal nUlDber of rows inA,B'), • • •

ELSE qs-b; l =b; • • •

FOR i=2:ma, 1 - a.l; qs = [qs,l];

While the matrix environments retain all attributes
normally associated with cOMand-driven interfaces
(flexibility, speed, etc.), they through these
structured language elements also provide the user
with an algorithmic interface. It makes the system
extendable -, this in particular has made the matrix
environment so popular and, in our view, so superior
to all other CACSD approaches.

In control-oriented matrix environments, one or se­
veral of the following additions are made:

A. Fischlin t'I a/.

control-oriented data structures other than ma­
trices (like transfer-function matrices, linear
and nonlinear system descriptions)

algori thms usable in control-theory

interfaces to nonlinear simulation languages

commands and software for generating general
graphical output (and in particular for generat­
ing frequencyplots and time-histories)

Even if this short survey of matrix environments did
not convince everybody to spend $75 (or more) , we do
not hesitate to state that the present matrix envi­
ronments represent the state of the art in CACSD
tools today. However, are they valuable and useful
in control/engineering education?

One of the two main educational goals of introducing
computer tools in (control) education, namely to the
student familiarity with a wide range of software
tools which he of she will encounter later as a
professional, is certainly fulfilled by the matrix
environments. These environments are here to stay
and will be developed further. Therefore, 'a basic
knowledge of their functionality will be just as
important to a control scientist as a solid basis of
st;-uctured programming is to a software engineer.

The second educational goal, namely to speed up or
increase learning of the subject matter, can be at­
tained by the use of matrix environments if they are
employed properly:

Matrix environments are inherently complex. Yet
wi th a gradual introduction, the student can
master their use wi thin one course. A first exer­
cise should probably not exceed the complexity
of our initial eigenvalue example.

Although the original matrix environments con­
tained only one user interface, the interactive
command language, some modern extensions support
alternative input-modi. For instance, in IMPACT
(Rimvall & Cellier, 1985) the user can instan­
tiate a question-and-answer dialog whenever he
does not know how to complete a command input.
Such multi-mode dialogs could aid the introduc­
tion of matrix environments to students.

An indiscriminant use of preprogrammed algo­
rithms is dangerous, in particular, in the first
problems of each new chapter. The student should

Inholt Eingong

:. ju
1") /\

\1 '.i

kl = 9.00

k2 = 5.00

I
10 Sek

10 Sek

be allowed to "program" his own algorithms, like
the one in our controllability example, other­
wise control theory algorithms are viewed as a
set of black-boxes.

Ideally, matrix environments should be used as a
base tool throughout the control education.
However, their use should be complemented with
special-purpose software having simple-to-use
interfaces for "canned experiments" and exer­
cises invol ving little or no direct numerical
(matrix) calculations.

THE USE OF SINGLE PURPOSE PROGRAMS

Single purpose programs are used in the teaching
process for,a very specific purpose. The goal of
their use may be to illustrate difficult parts of
control theory or to acquire specific knowledge in a.
certain domain. Four typical examples in use in the
teaching at the ETH ZUrich are the following:

1. Parameter tuning for three-term controllers

Several rules of thumb are available for the tu­
ning of three-term controllers. By designing
such controllers and testing them by simulation,
the student may get a feeling for heuristic tun­
ing methods, and he may also to his surprise find
out that different tuning algorithms (Ziegler­
Nichols, Chien-Hrones-Reswick, "Betragsopti­
mum", etc.) yield quite different results.

2. Design of state variable feedback controller and
observer

Such an exercise may be designed with several
goals in mind. One is certainly to get ac­
quainted with problems with many parameters.
Even for a second order example, there are at
least 6 parameters (two feedback coefficients
for the controller, and two for the observer,
the sampling time and the static gain) . It is
therefore desirable to have a good procedure
for the design available. Another goal is the
comparison of designs by pole-placement or
Riccati design techniques. The student may
compare the two by working through a set of
examples. He can do his exercise with very
little knowledge of the computer that is used
by providing him with an environment as the
one given in Figure 4.

Entwurf des Zustonds-Reglers

1 1��'::."t7""·"J7·" --------1 O-S-I e

-

k

><2

1
.(\

Abtast -Zeit = 0. 10

f3 = 9.00

1 0 S ek

.,

Fig. 4. State variable f eedback control

Simulation and Computer Aided Control System Design 59

3. Two-term controller on a plant with saturation

Nonlinear phenomena are especially well suited
for demonstration by computer simulation. The
student may experiment with linear tuning me­
thods and with anti-reset windup circuits.

4. sequencing control

Despi te the fact that sequencing control is
very important in practice, it is treated only
marginally in most control curricula. The main
reason is probably that sequencing control
systems are inherently nonlinear and consist
of parallel processes. Here again, simulation
plays an important role. The student may learn
basic concepts such as reachabili ty of dead­
locks by experimenting with small examples. He
may also investigate his own design. Lisp and
Prolog are suitable languages used for the im­
plementation of simulations, SLAM is used for
queuing systems.

DISCUSSION AND RECOMMENDATIONS

Different possibilities for the use of simulation
and CACSD in�ngineering education have been pre­
sented in the last sections. The question to be
discussed here, concerns the suitability of the
different approaches in a given environment.

No general advice can be given as the situation may
differ very much from school to school and from pro­
gram to program. In general terms, our experience
can be summarized as follows:

Teach your own sub ject: Students are supposed to
study a certain subject in a course, i. e. linear
control, nonlinear control, identification, adap­
tive control, etc. They should spend only limited
time learning how to use a computer (operating sys­
tems, languages) . Either this knowledge is already
available, or the computer-specific characteris­
tics should be hidden from the student as well as
possible.

Introduce tools carefully: Students should familia­
rize themselves with one or two commercial packages
in the area of control. This should be accepted as
a learning goal, and sufficient time and a sound
introduction should be provided.

Provide an environment: If several groups team up, a
teaching and learning environment of considerable
potential can be made available. The teachers and
students of ETH have for example the following
environment available at no cost on the Macintosh:

Macwrite, MacPaint, MacProject
Pascal, Modula-2
Prolog, Xlisp
Poly (a simple introductory CAD-system)
DialogMachine

This allows for a concentrated effort to create
courseware. The students can also be asked to write
their own programs for certain simple tasks.

Set goals according to the time available: Student
exercises and projects may be of very different du­
rations. There is a considerable difference between
1 to 4 hours exercises and a 200 hour project. A
good solution for a brief introduction to a sub­
ject may be very different from the one adopted for
a large project.

Train the teachers: Good teaching should be based on
personal experience. Lecturers and assistants must
be thoroughly familiar with the subject they teach,
including the hardware and software used during the
exercises. From our experience, a group entering the

field of computer based teaching needs a lead of six
months to one year before any teaching should be
done on a large scale.

Limit the number of machines and packages: The mar­
ket in this field is very dynamic. A group could
easily spend all its time and effort evaluating ma­
chines and software. It is very reasonable to limit
the products supported and to take decisions for a
certain amount of time. Well established products
with good support are often more effective for
teaching than the most recent hardware without soft­
ware.

Avoid the NIH effect: 'Not invented here' is often a
solid barrier to use a product, especially in the
European uni versi ties, where even textbooks are
used very seldomly but are replaced by handouts pro­
duced locally. Good software is produced in many
places. The attitude to use only packages which have
been produced locally is unreasonable.

Use a user model: A consistent user model and the
corresponding man-machine interaction simplifies
the task for the developer and user of program
packages.

TRENDS

A reasonable assessment of the value of the teaching
methods discussed in this paper will only be pos­
eible after gaining considerable classroom experi­
ence in different surroundings. From this, one can
conclude that it is useful to continue the exploit­
ation of the field in different directions,
following the guidelines proposed in the last sec­
tion. A considerable influence is expected from a
widespread use of graphics for input and output and
from the use of artificial intelligence techniques
such as expert systems or object centered program­
ming techniques for user guidance and for help in
problem solving.

CONCLUSIONS

Different ways to use computers for teaching control
systems by using simulation and computer aided con­
trol system design techniques have been shown. The
teacher has a wide choice of options ranging from
simple single-purpose programs to sophisticated de­
sign packages commercially available. The experi­
ence gained from experimenting with these tools at
the Swiss Federal Institute of Technology has been
summarized. Recommendations for the use of software
are provided. Much time and effort can be wasted by
careless use of computer facilities in the teaching
process. The paper advocates a carefully planned
approach to the problem of teachware design, imple­
mentation and use.

REFERENCES

Allenspach, H. , and Schaufelberger, W. (1985) . The
Use of a Home Computer for Computer Control Expe­
riments. IFAC/IFORS Conf. on Control Science and
Technoloqy for Development, Beijing, PR China

Baker, N. J. C. , and Smart, P. J. (1983) . The SYSMOD
Simulation Language. In W. Ameling (Ed.) , Proc.
1st Europ. Simulation Conference ESC'83. lnfQr=
matik Fachberichte, Springer-Verlag.

Fischlin, A. (1986) . Simplifying the usage and the
programming of modern working stations with
Modula-2: The "Dialog-Machine". In prep.

Little, J. N. , Emani-Naeini, A. , Bangert, S. B.
(1984) . CTRL-C and matrix environments for the
computer aided design of control systems. Proc.
6th Int. Conf. on Analysis and Optimization
(INRIA) . Lecture Notes in Control and Informa­
tion Sciences, 63, SpringerVerlag.

()O A. Fischlin ('l (1/.

Little, J. , Mooler, C. (1985) . PC-MATLAB User's
Guide. The MathWorks, Inc. , 124 Foxwood Rd. ,
Portola Valley, CA 94025, USA.

Mansour, M. , Schaufelberger, W. (1981) . Digital
Computer Control Experiments in the Control
Group of ETH ZUrich. IFAC World Congress, Kyoto,
Japan.

Mansour, M. , Schaufelberger, W. , Cellier, F. E. ,
Maier, G. E. , Rimvall, M. (1984) . The Use of Com­
puters in the Education of Control Engineers at
ETH ZUrich. Europe J. of Educe, ,2, pp. 135-151.

Moler, C. (1980) . MATLAB, User's Guide. Dept. of
Computer Science, Univ. of New Mexico, Albuquer­
que, USA.

Nievergelt, J. , Ventura, A. , Hinterberger, H.
(1986) . Interactive Computer Programs for Educa­
tion. Philosophy. Techniques and Education.
Addison-Wesley.

Rimvall, C. M. , Mansour, M. , Schaufelberger, W.
(1985) . Computer Aided Design of Control Sys­
tems, an Integrated Approach. Proc. 3rd IFAC
Symp. on Computer Aided Control System Design.
Pergamon Press.

Rimvall, M. , and Cellier, F. E. (1985) . A st�uctured
approach to CACSD. In M. Jamshidi, and C. Herget
(Eds.) , Advances in computer-Aided Control Sys­
tems Engineering. North-Holland.

Schaufelberger, W. , Good, H. , Itten, A. (1986) .
Education for Microprocessor Application in
Control. IFAC Symp. on Microprocessor Applica­
tion in Process Control. Istanbul, 22. -25. 7.
1986.

Schaufelberger, W. , Sprecher, P. , Wegmann, P.
(1985) . Echtzeitprogrammierung bei Automati­
sierungssystemen. Teubner StudienbUcher Elek­
trotechnik.

Walker, R. , Gregory, C. , Shah, S. (1982) . MATRIX, a
data anlysis, system identification, control
design, and simUlation package. IEEE Control
Systems Magazine, December 1982.

	Fi023_Page_01
	Fi023_Page_02
	Fi023_Page_03
	Fi023_Page_04
	Fi023_Page_05
	Fi023_Page_06
	Fi023_Page_07
	Fi023_Page_08
	Fi023_Page_09
	Fi023_Page_10

