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INTRODUCTION 

Non scholae, sed vitae discimus. 
[Not for the school, for life do we learn.] 
Epistolae morales 

In the last few years, microcomputers have become 
economically so attractive that many educational 
institutions started to invest into their employ­
ment. This is especially true for simulation which 
has a long tradition in using computers. 

There exist many approaches. They range from the 
programmed learning, dating back more than one de­
cade before the era of personal computing, to 
courseware supported learning by completely free 
exploration of unknown structures. Although, thanks 
to personal computing, programmed learning has gone 
through some sort of a reincarnation recently, we do 
not believe that this approach is fruitful in the 
field of simulation. On the contrary! Simulation of­
fers almost for any discipline the possibility to 
replace real-world, complex, experimental set-ups 
by simple and cheap models running on a microcom­
puter. Students may explore these models in place of 
the real systems in any way they wish: no risks are 
associated wi th such experiments, even if the begin­
ning student should know almost nothing about the 
real system. Hence, not only is simulation a learn­
ing subject, but it is also the means to learn a sub­
ject. Because of its similarity to a real-life si­
tuation, in contrast to programmed learning, the 
student profits from opportunities to acquire 
skills useful even beyond just the learning situa­
tion. Moreover, the motivation of students may be 
increased by demanding less of cognitive in place of 
intuitively appealing, unforgettable personal expe­
rience. 

In Computer-Aided Control Systems Design (CACSD), 
the use of CACSD-packages as well as simulation 
tools let us develop and test a new design for 
consistency up to any level of detail before having 
to implement it within the costly, real-life situa­
tion. However, two learning goals have to be clearly 
distinguished: The design of control systems for 
which appropriate software packages are just some 
means which may be employed without a detailed 
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understanding of the underlying techniques and the 
detailed study of the software tools themselves and 
their employment from the perspective of the de­
sign of control systems. Both goals deserve appro­
priate attention and the development of specific 
software in order to support them optimally. In 
the first situation, the utilized techniques are 
typically hidden from the student so that he or she 
can concentrate on the main subject, the design of a 
control system. In the second learning situation, 
the techniques and algorithms must not be hidden, on 
the contrary, the courseware would become meaning­
less without their emphasis. The only purpose the 
simulated system serves is to provide a model, which 
is appealing to the student. 

The distinction between the two learning goals des­
cribed above is much more fundamental than it might 
appear at the first glance. Students of electrical 
engineering remain at our university (swiss Federal 
Institute of Technology Zurich, ETHZ) for a minimum 
of 4 years. Spending much time and effort on train­
ing particular techniques, rather than basic prin­
ciples, offers students the advantage of being able 
to start working in a professional position right 
after having finished their studies. On the other 
hand, it has the danger that the acquired knowledge 
quickly becomes obsolete. Especially when consid­
ering the current speed of technological develop­
ment in the era of personal computing, these two 
goals become Skylla and charybdis. 

The students have to know the widely used software 
packages commercially available. On the other hand, 
they also have to gain a thorough understanding of 
the basic principles in order to be prepared when 
the next software generation becomes available on 
the market. 

Emphasis should be set on the few well-established 
classics, such as MATLAB. They are worth learning 
the idiosyncratic peculiarities. 

Another criteria to select a software package is its 
power to represent a whole class of tools. Given 
that the functions of such a tool serve a long-last­
ing purpose, even if the specific product does not 
survive, at least the corresponding family of similar 
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programs might. Having once mastered the prin­
ciples, learning to use a new product of the same 
program family will be a minor task. Consequent­
ly, particular software used in education may be 
favoured for its didactic merits, demonstrating 
much clearer what its underlying principles are, 
over other pieces of software despite their current 
popularity among professional practitioners. 

Attempts to minimize efforts to learn software idio­
syncraciecs lead to design problems of user inter­
faces: Syntax, usage, and programming of operating 
systems; command-driven versus menu-driven soft­
ware; graphics, i.e. graphical output and graphical 
input via a pointing device, e.g. a mouse; and the 
overall behavior of the application software, the 
so-called user model. 

Most conventional operating systems have first to be 
learned before any computations can be performed. 
Typically, they are full of illogical idiosyncra­
cies, forcing the user to devote intolerable large 
portions of his intellectual capacity to th� debug­
ging of meaningless, syntactical errors. 

Command-driven software is much more difficult to 
master than menu-driven software featuring pop-up 
or pull-down menus. Although command-driven soft­
ware can be used more efficiently if the user is 
proficient, menu-driven software can even be of much 
value to the versatile user when he is accessing 
many different computer systems. 

Any program adopts a particular "user model". It 
determines the general behavior of the program, 
not dealing wi th aspects determined by the 
application-specific algorithms. Using more than 
one computer system and more than one program, the 
case with most of our students, means that the user 
model also changes. Again this represents an 
unnecessary and time-consuming burden for the 
student. Hence, many computer-based control system 
design techniques and tools can not be taught to the 
students, simply because the time necessary to learn 
the overhead cannot be afforded. This holds in 
particular for students of system theory for whom 
the emphasis lies not on computer techniques but on 
mathematical solutions to control system design 
problems. 

Finally, graphical output should be featured when­
ever and wherever possible, since what holds in gen­
eral is true even more so for computers: one graph 
can replace a thousand words. In learning, this is 
particularly crucial. 

In our paper, we present some of the approaches with 
which we have experimented. Some of these allowed us 
to gain experience over a period of several years. 
They address many of the problems mentioned: the 
user shell MIDGET, which runs on top of the VAXfVMS 
operating system, addresses the operating system 
problem. The "Dialog Machine" is an approach to 
offer a general user model; some courseware programs 
featuring simulation just as a vehicle to purport an 
independent message, such as a method to design a 
controller, address the issue of software tailored 
to didactical needs. Finally we discuss our expe­
rience in the use of command-driven, general purpose 
research tools, CTRL-C and MATLAB, for educational 
purposes, addressing the issue of difficult to 
learn, but real-life software. Advantages and dis­
advantages of the various approaches are discussed, 
experience presented, and an outlook for future dev­
elopments is offered. 

OVERVIEW OF APPROACHES AND 
SOLUTIONS 

As no universal simulation/CACSD software solving 
all simulation problems exists (and probably never 
will exist), a considerable number of different 

software packages for simulation and control system 
design are available at the ETH. Table 1 lists the 
most commonly used packages at the Dept. of Auto­
matic Control (it is an updated version of a list 
from Mansour and co-workers, 1984 ) .  Note that a 
distinction is made between packages used as tools 
only, and packages developed and/or complemented at 
the ETH. 

1) ACSL (Advanced continuous Simulation Language). 
An easy-to-learn, well-structured interactive 
simulation language for continuous and sampled 
data systems. ACSL includes features like mac­
ros, procedurals, and non-linear functions. In 
the interactive mode, the user can change model 
parameters, perform simulations using terminal 
color graphics, as well as analyze a simulated 
system through its Jacobian matrix and eigen­
values. 
Available from Mitchell & Gauthier Associates, 
Inc., ACSL is presently the most used simulation 
language at the department. 

2) COSY /SYSMOD (COmbined SYstems, SyStem MODel­
ling). simulation language for combined contin­
uous and discrete systems, offers a high-level 
input language. 
The syntactical language definition of 'COSY has 
been defined using a general-purpose parser. At 
present, the COSY definition describes a state­
of-the-art simulation language with a structur­
ability and versatility not available in any 
other languages. Preprocessor and runtime sys­
tem are presently not available. 
Developed at our institute; a subset of COSY 
(SYSMOD) has been implemented by Systems Design­
er Ltd. on command by the British Ministry of De­
fence (Baker and Smart, 1983) . 

3) DARE-INTERACTIVE (Differential Analyzer RE­
placement). Extension to DARE-P, makes the lan­
guage interactive in a fashion similar to that 
of DARE-ELEVEN. New features include color gra­
phics, a run-time display, split-screen gra­
phics, modules for sensitivity analysis, replic­
ation and batch, and trend analysis. 
DARE-INTERACTIVE will in the future also pro­
vide access to a general data-base. 
Developed at the institute from DARE-P; runs 
under VAXjVMS. 

4) GASP-V/INTERACTIVE. Interactive version of the 
GASP-V package. Through the use of MIDGET and an 
interactive postprocessor from the DARE family, 
the user can enjoy a very flexible version of the 
powerful GASP-V package. 
GASP-V/I was developed at our institute; it runs 
under VAX/VMS. 

5) SDL (Simulation Data Language). Portable rela­
tional data base especially adapted to storage 
and retrieval of data from simulations. SDL can 
be easily connected to any simulation program 
providing for a FORTRAN interface. 
Developed by Pri tsker and Associates, Lafayette, 
IN., SDL is used in the second part of the simul­
ation lecture (discrete simulation) in connec­
tion with SLAM-II. 

6) SIMNON. Interacti ve simulation program for con­
tinuous and sampled data systems. Features very 
natural model descriptions as well as an easy­
to-use dialog form. One of the first packages to 
include terminal graphics to support interactive 
analysis/synthesis/optimization. 
Developed at Lund Institute of Technology (LTH), 
Lund, Sweden. Runs under VAXjVMS. 

7) SLAM-II. Batch-oriented simulation language 
using a PERT network description of discrete mo­
dels to be simulated. As SLAM-II is a superset 
of GASP-IV, it ca� also be used for combined con-
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tinuous/discrete simulation with only part of 
the system described by a network. 
SLAM-II was developed by Pritsker and Associa­
tes. It is presently used in the second part of 
the simulation lecture (discrete simulation) . 

8) STELLA. Ikon-oriented simulation package incor­
porated into the Macintosh environment. Although 
the present version of STELLA is much too 
rudimentary to be used for large simulations, 
its extreme simplicity makes it interesting for 
small student exercises. 

TABLE 1: CACSD and simUlation tools available at 
the ETH ZUrich 

Use at different levels I 
SDlULA- T I T Lab. Stud. I Grad. Use in I TIOH 5+6 1 7+8 Proj ' Iprog• Res. 

ACSL 0 2 0 2 1 2 
COSY/ * 
SYSMOD - - - 2 0 2 
DARE-INT* 0 0 2 0 0 1 

. 

DSL/VS 

I 
0 I 1 0 0 0 1 

FORSIM 0 0 0 1 0 1 
GASP-V/I* 0 0 0 0 0 1 

·SDL 0 1 0 1 I 0 I 1 I SIMNON 1 1 0 0 1 0 
SLAM-II 0 2 0 1 0 1 
STELLA 1 1 0 0 0 1 

CACSD 

CTRL-C 2 2 0 2 2 2 
IMPACT * - - - 2 0 2 
MATLAB 0 0 1 0 1 2 
PC-MAT-

LAB 0 0 1 0 1 1 

TOOLS 

DIALOG-
MACHINE * 2 0 0 1 0 2 
MIDGET* 2 2 2 2 2 2 
SPECIAL-
PURPOSE* 2 1 1 1 0 0 

2: much used; 1: used; 0: hardly ever used; -: not 
applicable/not available; *: developed at ETH; 
T: term. 

Although there is a large common area between the 
fields of simUlation software and CACSD software, 
the two are treated separately in this paper. Some 
of the following CACSD systems also contain simula­
tion features. 

1) CTRL-C. Commercial package extending the origi­
nal MATLAB program to a full control-environ­
ment. Flexible graphics, control algorithms and 
function/procedure capabilities have been added. 
Available from Systems Control Technology, Inc. , 
California. 

2 ) IMPACT. The newest CACSD project at our insti­
tute. IMPACT is conceptually based upon MATLAB, 
but implemented in Ada@. IMPACT supports a mul­
titude of data-structures needed in control 
theory, (e. g. polynomial structures and system 
descriptions) , and provides a dual-mode command­
driven/question-and-answer-driven interactive 
interface for easy use. 

3) MATLAB. Developed at the Univ. of New Mexico, 
MATLAB provides an easy-to-use. interactive in-

terface to matrix manipulation algorithms of 
LINPACK and EISPACK. 

4) PC-MATLAB. Commercial PC-version of MATLAB im­
plemented in C. It extends MATLAB in the same 
areas as CTRL-C, and fully utilizes the 8087 co­
processor to make PC-MATLAB almost as fast as 
the original MATLAB on e. g. a VAX-750. Available 
from The Mathworks, Inc. , MA. 

Some universal algorithmic/operational software is 
used on many different simulation/CACSD packages. 
All the here listed tools have been developed at the 
institute, and are treated in detail in other parts 
of this paper. 

1) DIALOG MACHINE. General Purpose graphical and 
dialog software to be used during the implemen­
tation of interactive software on a modern, 
single-user work station. 

2) MIDGET. General purpose environment facilitat­
ing the use of larger (simulation) packages. 

3) SPECIAL PURPOSE PROGRAMS. Stand-alone programs 
developed to be used in laboratory or classroom 
exercises to solve particular problems • 

STUDENT ENVIRONMENTS UNDER MIDGET 

As we have seen in the first part of this paper, a 
mul ti tude of software packages are available for 
simUlation and CACSD during exercises and/or labo­
ratory work. However, their employment is unfortu­
nately not as simple as "go to computer A, start 
package B, and solve problem C". Although the aver­
age student hopefully knows from the lecture how to 
solve problem C, he probably knows neither 

- how to use computer A, nor 
- how to start and work with package B. 

Consequently, before any exercise using a (for the 
student) new computer and/or software package, much 
time must be spent on computer introductions. 
Thereby, the introduction to the used package 
itself may be well employed when it also gives the 
student insight into the techniques utilized by the 
package. Differently, the introduction to the oper­
ating environment of the package is often totally 
irrelevant to the exercise and subject matter. This 
can lead to an extensive loss of time. Generally 
speaking, there are three approaches to this prob­
lem: 

Introduce the principles and basic commands of 
the available operating system to the students, 
so that they can work independently on that par­
ticular computer. 

Provide the students with a step-by-step list of 
operating system commands to be entered with no 
or few explanatory comments. 

Incorporate the needed operating system commands 
into a simple-to-use user environment ( "user­
shell") to hide the operating system. 

The first, conventional approach is the most ineffi­
cient one, yet probably the most wide-spread one. As 
every consistent subset of a conventional operat­
ing-system is likely to be quite substantial, much 
time would have to be spent before the student can 
work independently in a fairly efficient manner. 

In some cases, it is better to let the students 
blindly copy a prescribed, but unexplained, list of 
commands. However, this method is only employable 
where a simple application package is to be used and 
few actions involving the operating system must be 
taken. Otherwise, the slightest error by the stu­
dents will leave him totally confused. 
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In our view, the best approach is to provide the 
student with an adapted environment, and thereby to 
shield him from the intricacies of the operating 
system (except, of course, in lectures on system 
software, etc. ) .  Such an environment must on one 
hand be simple enough to learn and use to warrant 
its implementation time, on the other hand, it must 
let the student perform all necessary actions (or we 
are back at square one again) . These two require­
ments are at a first glance contradictory, yet the 
existence of a general environment or a tool for 
creating new environments (an "environment environ­
ment") would put us on the right track. 

At the ETH, we have experienced with all three ways 
of presenting "conventional" computers to the stu­
dents (typically VAX/VMS, CDC or IBM-mainframe en­
vironments) . We employ the first two methods prim­
arily during larger projects where there is ample 
time, or when the utilization of the employed pack­
age requires few operating system commands to be 
entered (e. g. invoking "matrix-environments") . For 
the access to more complex packages during,shorter 
exercises, we try to take the third approach. 

In a first generation of simulation-package envi­
ronments implemented at the institute some four 
years ago, the student still worked with the normal 
operating system. To assist him, we supplied a few 
powerful commands hiding most of the actual system 
actions taken. However, this approach was unsatis­
factory, as the student still "could take too many 
wrong paths" without realizing it. 

In a second generation of packages, the student ne­
ver got in contact with the underlying operating 
system. He only had access to a few commands pre­
sented to him over a menu, limiting the number of 
mistakes he could make and streamlining the access 
to of different software packages. Although this 
second generation worked very satisfactorily for 
the students, the implementation time of these envi­
ronments became tremendous. Many times the students 
asked a relevant "why doesn't the environment allow 
me to do this?", which lead to extensions to each of 
the packages. Moreover, our students became "spoil­
ed" and asked us to supply these nice environments 
for more packages. It soon became clear that what we 
needed was an environment for developing student 
environments. Thus the idea of MIDGET was born. 

MIDGET (Menu-driven Interati ve Development-system 
for Generic Engineering Tasks) is a set of Pascal 
and operating system programs (VAX/VMS) for the dev­
elopment and employment of software environments. 
MIDGET standardizes the user interface of the dif­
ferent software environments without restricting 
the kind of actions supported by these environments. 
Hence, environments have been developed for very di­
verse software packages (from simulation languages 
to word-processing systems) , yet the implementation 
time for individual environments is short (over 80% 
of the code are common to all environments and 
another 10-15% are reusable between similar kinds of 
environments) .  Normally, a "MIDGET-manager" famili­
ar with the development system for environment as 
well as the software package to be given an environ­
ment, needs 2-3 working days to construct a new en­
vironment. This as contrast to 2-3 weeks for our 
initial, second-generation environments. 

MIDGET is simple enough to be used after only 15-20 
minutes of introduction. To prove this, let us spend 
the next 15-20 lines of text explaining the prin­
ciples of a typical MIDGET environment. 

In Fig. 1 you see the main menu presented to the user 
by the ACSL environment (ACSL is a powerful simula­
tion language for continuous models) . In the top 
third of the screen, the state of the environment is 
given. In particular, the condition of "flags" (take 
the value ON or OFF) are displayed and the name(s) 
of the problem presently treated is given. Each of 

these fields can be changed by entering correspond­
ing commands - the most important of these commands 
are displayed in the middle of the screen. At the 
bottom of the screen, names of further sub-menus are 
displayed. These sub-menus generally contain com­
mands not needed during the first days a student 
works under the environment; when needed, they get 
displayed simply by giving their name. Some of the 
commands (like the SELECT command choosing the name 
of the model to be treated) takes parameter(s) . If 
the user does not supply these parameters with the 
command (in the form SELECT MYPROBLEM) , he will be 
asked for the parameter value(s) . Whenever the user 
is at loss, the hierarchical HELP-command gives fur­
ther assistance. contrastingly, when the user gets 
familiar with the environment, he can switch the 
menu OFF for faster operation. 

Not only does the "reusability" of the MIDGET envi­
ronments decrease their implementation time, this' 

also assists the user switching from one environment 
to another (for example, the user needing ACSL for 
continuous simulations and SLAM for discrete-event 
simulations) . Even between environments of very 
diverse software packages (such as ACSL and SLAM) , a 
large section of the commands remain the same. For 
example, almost all simulation environments sup­
port the commands SELECT, PROGRAM, EXECUTE and OUT­
PUT; yet the action taken as the user enters the 
commands is quite different (sometimes an EXECUTE 
compiles a model, another time an interpreter is 
called, and a third time the action depends on the 
value of a "flag") . Typically, the introduction time 
for new environments is around 5-10 minutes. 

FLAGS 
FLAGS 
FLAGS 
FLAGS 
DEFAULTS: 
SYSPICS : 

COMMANDS: 

MENU - ON ACSL listing - ON 
FORTRAN listing - OFF Loader map - OFF 
Own main program - OFF 
Analysis feature - OFF 
All defaults - [CACSD. RIM. SIMl] 
Selected problem - MYPROBLEM 

DATA * Edit the ACSL data file (run time 
commands) 

DIRECTORY * List all defined ACSL problems 
EXECUTE * Compile and run ACSL problems 
HELP * Extensive help information 
OUTPUT * Edit ACSL output file 
PROGRAM * Edit the ACSL program (system 

description) 
SELECT * Select problem to be treated 

SUB-MENUS containing further commands: 
ADVANCED * Advanced commands to run ACSL 
DEFAULTS * Commands to change default values 
DEVICES * Commands for external devices 
EDIT * Additional edit commands 
FILES * File manipulation commands 
SYSTEM * Commands leave current development 

system 

SELECT COMMAND: 

Fig. 1. Main menu of the MIDGET environment to 
ACSL 

Somewhat surprisingly, the use of MIDGET has not 
limited itself to students. Many of our colleagues 
use MIDGET whenever they work with any simUlation 
language (and are then at a total loss when they have 
to work on a "strange" computer where they suddenly 
have to "know what to do") . Except for the cases 
where the user wants to modify the simUlation pack­
age itself, the use of MIDGET increases producti vi ty 
without operational limitations. Moreover, the in­
stallation of MIDGET at other academic institutions 
worldwide, and the development of over a dozen dif­
ferent environments indicate that our approach to 
student environments for larger software packages 
on machines with conventional operating systems is 
sound. 



Simulation and Computer Aided Control System Design 55 

THE DIALOG MACHINE 

The "Dialog Machine" is a software package which has 
been produced as part of an authoring system under de­
velopment at the Swiss Federal Institute of Technolo­
gy Zurich (ETHZ) by the project team CELTIA (�omputer­
aided �xplorati ve Learning and �eaching wi th Interac­
tive Animated Simulation) . It has been implemented on 
the Apple� Macintosh computer (S12K RAM or more) and 
in its current version it consists of eleven modules 
supporting pull-down menus, windows, window-related 
input and output, modal dialogs, modeless dialogs, 
alerts, and files. The "Dialog Machine" is an abstract 
machine filtering so- called user e:vents, reating to 
them whenever possible automatically and passing them 
whenever necessary to handlers provided by the appli­
cation program. 

The "Dialog Machine", once started, attempts to keep 
control over all run-time activities of an applica­
tion program. It intercepts all events due to a user 
action, the so-called user events, such as pressing 
the mouse button, choosing a menu item, activating a 
window, clicking an object, or dragging an object on 
the screen, and reacts to them in a predefined, stand­
ard way. Only events, which cannot be treated automa­
tically by th� "Dialog Machine" are channeled through 
the system to the application-specific program sec­
tions. All user events are rigorously defined and the 
programmer can interface his application-specific 
code to the user events in a structured way. For ins­
tance, the clicking in the front window, or the clos­
ing of a window, which does not correspond to the 
choosing of a menu item, are such events. Program con­
trol is only temporarily passed to application-speci­
fic program sections. Consequently, the applica­
tion-specific software consists of a set of proce­
dures which can be called in an arbitrary sequence, 
rather than of a conventional block of program state­
ments (straightline code) to be executed one after the 
other (Fig. 2) . 

PROGRAM CONTROL 

: . . . . . . . . . . ....... . ... . . . . . . . . . . .  . 
· . 
· . 
· . 
· . : Program : 

module --:--+ 
(mai n prog.) Run: 

�. 
� 

etc. 

Application 

"Oi alog : ... :----+��£) 
Mac hi ne" : .. +----

�_4 ______ , ___________________ , 

Fig. 2. "Dialog Machine" and Program Control. 

The "Dialog Machine" separates those program parts, 
which are common to any interactive application pro­
gram from those program sections, which are applica­
tion-specific. It thus simplifies the programming 
task of a typical application program SUbstantial­
ly. Furthermore, the "Dialog Machine" standardi zes 
not only the appearance, but also the behavior of an 
application program as far as the user dialog is 
concerned, helping students to orient themselves 
wi thin complex courseware and reducing the time 
needed for learning to use new software. 

The "Dialog Machine" can be considered as a versa­
tile software development environment featuring 
consistent usage and simplified programming of mo­
dern working stations (Fischlin, 1986) . 

The "Dialog Machine" consists of eleven Modula-2 
library modules (DM stands for "Dialog Machine") : 
DMMaster, DMMenus, DMWindows, DMWindowIO, DMModal­
Dlgs, DMModelessDlgs, DMAlerts, DMFiles, and two 
auxiliary modules DMLanguage, DMConversions, plus 
DMSystem (Fig. 3) . 

The modules DMMaster, DMMenus, DMWindows, DMWindow-
10, and DMLanguage depend mutually on each other. 
They build the core of the "Dialog Machine" and must 
always be resident. The modules DMModalDlgs, DM­
ModelessDlgs, DMConversions and DMFiles can be used 
in addition to the core modules. Two may even be 
used completely independently of the "Dialog Ma­
chine" (DMConversions, DMFiles) . The system-speci­
fic characteristics, e. g. the screen dimensions are 
provided by the auxiliary module DMSystem. 

The module DMMaster is the master module maintaining 
overall control of all actions, in particular user 
events. User events that can be handled automatic­
ally by the "Dialog Machine" are either passed to 
the other modules or module DMMaster responds to 
them directly. These mechanisms are transparent to 
the programmer or user. Does the user event require 
some particular, application-specific response, in­
formation on the event is found within the approp­
riate module. For example, the current mouse posi­
tion is needed during dragging. Since the "Dialog 
Machine" supports only dragging within a window, 
this information is available from module DMWindow-
10. However, pressing a key on the keyboard is a 
user event, which is not related to any particular 
user interf ace ob j ect, such as e. g. a window. Hence, 
information on user events of this type, e. g. which 
key has been pressed, have to be taken from module 
DMMaster. 

The module DMMenus supports the installation and ma­
nagement of menus. Typically, application-specific 
procedures are installed wi thin the "Dialog Ma­
chine" and provide the desired action when the cor­
responding menu item is chosen. All procedures for 
the activation or deactivation of menus, or changing 
menu texts, or checking a menu item, plus all other 
similar menu management tasks are supported. 

The module DMWindows provides the window manage­
ment. Several window types are supported: It is 
possible to create windows with or without scroll 
bars (scrolling and updating is performed automa­
tically) , with a fixed or adjustable size, with or 
without a close box, at a fixed screen location or 
movable, etc. Typically, a window is created by 
simply calling the procedure CreateWindow, and all 
other, subsequent window related tasks, such as re­
sizing, activating, or closing of a window, are left 
to the "Dialog Machine" via mouse user events. 

Module DMWindowIO provides graphical input via the 
pointing device and textual or graphical output 
based on a small set of simple coordinate systems. 

Via module DMWindowIO it is possible to detect one 
type of user events, i. e. the clicking within the 
content of a window, and to relate them to graphical 
objects of a round or rectangular shape. Further­
more, routines to drag graphical objects once their 
sizing has been detected, are offered. Procedures 
to determine scrolling amounts and scroll slider 
positions. 

The first output coordinate system of module DMWin­
dowIO supports textual output by addressing charac­
ter cells in rows and columns. A second, graphical 
coordinate system is based on a two-dimensional car­
tesian coordinate system in pixel units with its 
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Fig. 3. The structure of the "Dialog Machine" 

orlgln typically to the lower left corner of the 
output window. Thirdly, turtle graphic routines are 
offered. The fourth coordinate system is the so­
called user coordinate system, which addresses 
points as pairs of real numbers. It maps any 
two-dimensional cartesian coordinate system defined 
in real numbers to a rectangular portion of the 
current output window. It is possible to freely 
switch from one coordinate system to the other. All 
output is actually done with one common pen only. 
Hence, the various coordinate systems are just con­
venient means to access the basic underlying output 
mechanism. Moreover, conversion routines are 
available and it is even possible to display a pre­
defined picture stored as a bitmap. 

The modules DMModalDlgs and DMModelessDlgs provide 
means to enter data. Any elementary data type, cha­
racter, integer, cardinal, and real (boolean is sup­
ported through check boxes) , may be entered. Data 
will automatically be checked for syntactic cor­
rectness and for whether its value lies within a 
range defined by the application. Of course, strings 
can be entered j however, without any checking. Other 
supported items are push buttons, sets of radio 
buttons, check boxes, and scroll bars. 

Module DMModalDlgs features modal dialogs. They are 
characterized by the fact that once a modal dialog 
has started, the user is forced into the correct 
termination of this dialog. Only syntactically cor­
rect data within a predefined range can be entered, 
otherwise they are re jected till correct. 

Module DMModelessDlg allows to define editing fields 
for any of the elementary data types and other 
dialog items within an ordinary window as managed by 
module DMWindows. Consequently, the user may inter­
rupt or resume the modeless dialog at any moment, 
the same way as he or she may switch his attention 
from one window to another. 

The module DmAlerts may be used to display warning 
or error messages. 

The module DMFiles provides simple means to store or 
retrieve data sequentially on a disk file. Files can 
be searched or created by means of dialog boxes. All 
elementary data types, characters, strings, inte­
gers, cardinals, or reals, may be written or read. 
Several files may be accessed simultaneously. 

Module DMLanguage lets define a particular language 
as the current language. All modules of the "Dialog 
Machine" will adjust automatically to the hnguage 
chosen, and the programmer may also implement an­
other language by writing his own implementation for 
this module. 

Module DMConversions offers conversion routines to 
convert numbers of type CARDINAL, INTEGER, or REAL 
to a string or vice-versa. 

Modules DMSystem and DMBase export system-specific 
ob jects, such as hardware dependencies. For ex­
ample, the screen resolution is exported by module 
DMSystem. Module DMBase is not to be used by the 
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"Dialog Machine" client, it only serves the "Dialog 
Machine" itself and its portability to other ma­
chines (e.g. Sun). 

The "Dialog Machine" is used by importing any of the 
ob jects from any of the library modules into a 
program module. The importing compilation unit, a 
program module, forms the base of the application to 
be developed. At minimum, it must contain the 
statement activating the "Dialog Machine". Hence, 
the simplest, still executable program consists of 
five lines only. Typically, the application module 
contains a set of procedures which are called, when 
the associated menu items are chosen (Fig. 2). In 
addition, it contains statements installing these 
procedures into the "Dialog Machine". These state­
ments are usually executed before the last statement 
of the program, the statement which starts the 
"Dialog Machine". Such a program module requires 
compilation (plus linking, depending on the Modu­
la-2 implementation) and is then ready for execu­
tion. 

The latest version 0.3 of the "Dialog Machine" has 
been implemented using the newest Modula-2 imple­
mentation MacMETH (Macintosh Modula ETH]. MacMETH 
was developed at theoept. of computer Science at 
the Swiss Fed&ral Institute of Technology Zurich 
(ETHZ) under N. Wirth, the creator of Pascal and 
Modula-2 (MacMETH consists of a 1-pass compiler, 
symbolic debugger, editor (displaying compilation 
errors), linker respectively application maker, 
loader, plus a shell to quickly switch between com­
piler, editor, and debugger or execute a program). 

THE USE OF MATRIX-ENVIRONMENTS 
IN ENGINEERING EDUCATION 

Many of the algorithms used in control theory, and 
especially those used in the time-domain, are com­
posed of simple linear-algebra primi ti ves such as 
matrix operations (I/+I/, It_tl, ".", and "/"), eigen­
value operations and other matrix manipulations/de­
compositions. Another characteristic of control 
theory is the habitual use of graphs and graphical 
methods, particularly during frequency domain 
design. Traditionally, both of these approaches 
required the use of pencil and paper. With the 
slide-ruler you could only draw straight lines (!), 
and it gave you little assistance during matrix 
operations. Not even the advent of cheap pocket 
calculators helped much (although you could use the 
programmable ones to calculate the points to plot by 
hand). similarly, few computer CACSD programs exis­
ted, and the few existing ones were normally not 
very sophisticated. At best, a CACSD program of the 
1970's gave access to the most COMon linear-al­
gebra routines over an interactive question-and­
answer interface of some kind. The dialog was 
totally controlled by the computer and any deviation 
from the pre-programmed path was impossible (parti­
cularly distressing, when after a false numerical 
input the user had to continue a meaningless conver­
sation until the computer produced some mendacious 
results) • 

In 1980 MATLAB (MATrix LABoratory), a new interac­
ti ve program giving access to the linear-algebra 
routines of LINPACK and EISPACK, appeared (Moler, 
1980). Although intended for numerical analysists, 
the control community soon realized that MATLAB (or 
extensions thereof) ideally suited for their needs. 
MATLAB is in the public domain and soon the phrase 
"the best piece of software available for 75 bucks" 
(distribution cost) was coined. 

However, some people wanted more and had the money 
to pay for it. Therefore, soon packages derived from 
MATLAB but incorporating further control-related 
algorithms and the so needed graphical output sold 
for $20.000 to $60.000 (coMercial price). As they 
got more wide-spread and cheaper, the term matrix-

scs-e' 

environments was coined and refers to all (CACSD) 
packages having a userinterface similar to that of 
MATLAB. Interestingly enough, almost all develop­
ments of new CACSD-packages commenced after 1981-82 
based upon MATLAB in some way or another (Little and 
co-workers, 1984; Rimvall & Cellier, 1985; Walker 
and co-workers, 1982). 

After this uninhibited praise of MATLAB, those who 
do not (yet) know any matrix environment package de­
serve a short introduction: 

A basic matrix-environment can be thought of as a 
pocket calculator working on complex matrices ra- >_ 

ther than on scalars. Matrices are entered in a 
straight-forward fashion using a transparent com­
mand language. For example, to interactively enter a 
3.3-matrix and calculate its eigenvalues and eigen­
vectors using the freeform input format of original 
MATLAB (user input bold): 

<> 
a=[l 3 5 

7 6 5 
o 0 5]; 

<> 
[vec,val] = eig(a) 

VAL = 

-1. 7202 0.0000 
0.0000 8.7202 
0.0000 0.0000 

VEC = 

-0.7408 0.3879 
0.6717 0.9982 
0.0000 0.0000 

0.0000 
0.0000 
5.0000 

-0.4000 
-2.2000 

1.0000 

The matrix environments are normally implemented as 
stack-machines with the dimension of the different 
matrices limited only by the total amount of avail­
able computer memory (and the patience of the user 
entering the matrices). 

Basic operations in these matrix-environments in­
clude many linear-algebra functions such as inver­
sions, transformations, and decompositions. More­
over, the user can define more complex operations on 
his own by clustering primitive operations using an 
interacti ve "prograMing language". Thereby, struc­
tures such as IF-THEN-ELSE, FOR-LOOPs and WHILE­
LOOPs are supported by all matrix environments, some 
also let the user define functions with parameters 
and local variables. The following example shows how 
a function for calculating a controllability matrix 
can be defined in CTRL.,C: 

II [qs] = CONTROL(a,b) 
[ma,na] = SIZE(a); 
[Db,rub] = SIZE(b), 

IF ma <> na, • • •  

DISPLAY('Non-square A-matrix'), 
ELSE IF ma <> mb, • • •  

DISPLAY( 'unequal nUlDber of rows inA,B'), • • •  

ELSE qs-b; l =b; • • •  

FOR i=2:ma, 1 - a.l; qs = [qs,l]; 

While the matrix environments retain all attributes 
normally associated with cOMand-driven interfaces 
(flexibility, speed, etc.), they through these 
structured language elements also provide the user 
with an algorithmic interface. It makes the system 
extendable -, this in particular has made the matrix 
environment so popular and, in our view, so superior 
to all other CACSD approaches. 

In control-oriented matrix environments, one or se­
veral of the following additions are made: 
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control-oriented data structures other than ma­
trices (like transfer-function matrices, linear 
and nonlinear system descriptions) 

algori thms usable in control-theory 

interfaces to nonlinear simulation languages 

commands and software for generating general 
graphical output (and in particular for generat­
ing frequencyplots and time-histories) 

Even if this short survey of matrix environments did 
not convince everybody to spend $75 (or more) , we do 
not hesitate to state that the present matrix envi­
ronments represent the state of the art in CACSD 
tools today. However, are they valuable and useful 
in control/engineering education? 

One of the two main educational goals of introducing 
computer tools in (control) education, namely to the 
student familiarity with a wide range of software 
tools which he of she will encounter later as a 
professional, is certainly fulfilled by the matrix 
environments. These environments are here to stay 
and will be developed further. Therefore, 'a basic 
knowledge of their functionality will be just as 
important to a control scientist as a solid basis of 
st;-uctured programming is to a software engineer. 

The second educational goal, namely to speed up or 
increase learning of the subject matter, can be at­
tained by the use of matrix environments if they are 
employed properly: 

Matrix environments are inherently complex. Yet 
wi th a gradual introduction, the student can 
master their use wi thin one course. A first exer­
cise should probably not exceed the complexity 
of our initial eigenvalue example. 

Although the original matrix environments con­
tained only one user interface, the interactive 
command language, some modern extensions support 
alternative input-modi. For instance, in IMPACT 
(Rimvall & Cellier, 1985) the user can instan­
tiate a question-and-answer dialog whenever he 
does not know how to complete a command input. 
Such multi-mode dialogs could aid the introduc­
tion of matrix environments to students. 

An indiscriminant use of preprogrammed algo­
rithms is dangerous, in particular, in the first 
problems of each new chapter. The student should 
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be allowed to "program" his own algorithms, like 
the one in our controllability example, other­
wise control theory algorithms are viewed as a 
set of black-boxes. 

Ideally, matrix environments should be used as a 
base tool throughout the control education. 
However, their use should be complemented with 
special-purpose software having simple-to-use 
interfaces for "canned experiments" and exer­
cises invol ving little or no direct numerical 
(matrix) calculations. 

THE USE OF SINGLE PURPOSE PROGRAMS 

Single purpose programs are used in the teaching 
process for,a very specific purpose. The goal of 
their use may be to illustrate difficult parts of 
control theory or to acquire specific knowledge in a. 
certain domain. Four typical examples in use in the 
teaching at the ETH ZUrich are the following: 

1. Parameter tuning for three-term controllers 

Several rules of thumb are available for the tu­
ning of three-term controllers. By designing 
such controllers and testing them by simulation, 
the student may get a feeling for heuristic tun­
ing methods, and he may also to his surprise find 
out that different tuning algorithms (Ziegler­
Nichols, Chien-Hrones-Reswick, "Betragsopti­
mum", etc. ) yield quite different results. 

2. Design of state variable feedback controller and 
observer 

Such an exercise may be designed with several 
goals in mind. One is certainly to get ac­
quainted with problems with many parameters. 
Even for a second order example, there are at 
least 6 parameters (two feedback coefficients 
for the controller, and two for the observer, 
the sampling time and the static gain) . It is 
therefore desirable to have a good procedure 
for the design available. Another goal is the 
comparison of designs by pole-placement or 
Riccati design techniques. The student may 
compare the two by working through a set of 
examples. He can do his exercise with very 
little knowledge of the computer that is used 
by providing him with an environment as the 
one given in Figure 4. 
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3. Two-term controller on a plant with saturation 

Nonlinear phenomena are especially well suited 
for demonstration by computer simulation. The 
student may experiment with linear tuning me­
thods and with anti-reset windup circuits. 

4. sequencing control 

Despi te the fact that sequencing control is 
very important in practice, it is treated only 
marginally in most control curricula. The main 
reason is probably that sequencing control 
systems are inherently nonlinear and consist 
of parallel processes. Here again, simulation 
plays an important role. The student may learn 
basic concepts such as reachabili ty of dead­
locks by experimenting with small examples. He 
may also investigate his own design. Lisp and 
Prolog are suitable languages used for the im­
plementation of simulations, SLAM is used for 
queuing systems. 

DISCUSSION AND RECOMMENDATIONS 

Different possibilities for the use of simulation 
and CACSD in�ngineering education have been pre­
sented in the last sections. The question to be 
discussed here, concerns the suitability of the 
different approaches in a given environment. 

No general advice can be given as the situation may 
differ very much from school to school and from pro­
gram to program. In general terms, our experience 
can be summarized as follows: 

Teach your own sub ject: Students are supposed to 
study a certain subject in a course, i. e. linear 
control, nonlinear control, identification, adap­
tive control, etc. They should spend only limited 
time learning how to use a computer (operating sys­
tems, languages) . Either this knowledge is already 
available, or the computer-specific characteris­
tics should be hidden from the student as well as 
possible. 

Introduce tools carefully: Students should familia­
rize themselves with one or two commercial packages 
in the area of control. This should be accepted as 
a learning goal, and sufficient time and a sound 
introduction should be provided. 

Provide an environment: If several groups team up, a 
teaching and learning environment of considerable 
potential can be made available. The teachers and 
students of ETH have for example the following 
environment available at no cost on the Macintosh: 

Macwrite, MacPaint, MacProject 
Pascal, Modula-2 
Prolog, Xlisp 
Poly (a simple introductory CAD-system) 
DialogMachine 

This allows for a concentrated effort to create 
courseware. The students can also be asked to write 
their own programs for certain simple tasks. 

Set goals according to the time available: Student 
exercises and projects may be of very different du­
rations. There is a considerable difference between 
1 to 4 hours exercises and a 200 hour project. A 
good solution for a brief introduction to a sub­
ject may be very different from the one adopted for 
a large project. 

Train the teachers: Good teaching should be based on 
personal experience. Lecturers and assistants must 
be thoroughly familiar with the subject they teach, 
including the hardware and software used during the 
exercises. From our experience, a group entering the 

field of computer based teaching needs a lead of six 
months to one year before any teaching should be 
done on a large scale. 

Limit the number of machines and packages: The mar­
ket in this field is very dynamic. A group could 
easily spend all its time and effort evaluating ma­
chines and software. It is very reasonable to limit 
the products supported and to take decisions for a 
certain amount of time. Well established products 
with good support are often more effective for 
teaching than the most recent hardware without soft­
ware. 

Avoid the NIH effect: 'Not invented here' is often a 
solid barrier to use a product, especially in the 
European uni versi ties, where even textbooks are 
used very seldomly but are replaced by handouts pro­
duced locally. Good software is produced in many 
places. The attitude to use only packages which have 
been produced locally is unreasonable. 

Use a user model: A consistent user model and the 
corresponding man-machine interaction simplifies 
the task for the developer and user of program 
packages. 

TRENDS 

A reasonable assessment of the value of the teaching 
methods discussed in this paper will only be pos­
eible after gaining considerable classroom experi­
ence in different surroundings. From this, one can 
conclude that it is useful to continue the exploit­
ation of the field in different directions, 
following the guidelines proposed in the last sec­
tion. A considerable influence is expected from a 
widespread use of graphics for input and output and 
from the use of artificial intelligence techniques 
such as expert systems or object centered program­
ming techniques for user guidance and for help in 
problem solving. 

CONCLUSIONS 

Different ways to use computers for teaching control 
systems by using simulation and computer aided con­
trol system design techniques have been shown. The 
teacher has a wide choice of options ranging from 
simple single-purpose programs to sophisticated de­
sign packages commercially available. The experi­
ence gained from experimenting with these tools at 
the Swiss Federal Institute of Technology has been 
summarized. Recommendations for the use of software 
are provided. Much time and effort can be wasted by 
careless use of computer facilities in the teaching 
process. The paper advocates a carefully planned 
approach to the problem of teachware design, imple­
mentation and use. 
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