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Abstract 

Many systems dealt with in environmental sciences such as ecology or environmental biology 
could be easily modelled and efficiently simulated on personal computers or on workstations. 
Thanks to their graphical capabilities such computers make it possible to model systems interacti
vely, e.g. supported by graphical structure editors, or allow for interactive simulation featuring so
phisticated graphical output of the simulation results. However, in practice this potential remains 
often underexploited, since traditional, simulation software is mostly batch oriented, largely ig
nores computer science research, and offers rarely the functionality needed for a sensible interac
tive use. Instead of porting simulation software from main-frames onto workstations we propose 
new concepts based on Wymore and Zeigler's modeling theory, enhanced by some new interactive 
user oriented task concepts. This paper presents a scheme called RAMSES for the architecture of 
a modeling and simulation environment on a workstation particularly suited for the working with 
environmental systems. Furthermore it reports on some results which have been obtained by im
plementing portions of the RAMSES architecture, in particular an open and extensible modeling 
and simulation environment for the two classical model formalisms SM (Sequential Machine), 
DESS (Differential Equation System Specification) featuring modular modeling. Finally the mo
deling and simulation of a system from population ecology is presented as an example to illustrate 
and evaluate some of the concepts of RAMSES in ecological research. 

1 Introduction 

The demands for interactive modeling and simulation of environmental systems are old (HOLLING, 
1964; DAVIDSON & CLYMER, 1966), whereas the possibility to satisfy them are rather new. In
teractive modeling and simulation have never been the strength of the traditional main-frame simu
lation software, but today, with the wide-spread usage of personal computers and recently the 
more powerful workstations, the possibility to bring the computational power of the main-frames 
together with the interactivity and user-friendliness of workstations has become economical and is 
indeed most attractive. 

However, straightforward realizations seem difficult, since an application of existing modeling and 
simulation techniques has first to overcome several obstacles: First the majority of simulation soft
ware has an architecture which is mainly batch oriented (CELLIER, 1975, 1979, 1982, 1984a; 
ANONYMOUS, 1988); secondly it largely ignores current computer science research (KREU1ZER, 
1986); and thirdly, maybe most importantly, aside from very few exceptions the software is not 
founded on a mathematically sound basis, i.e. it ignores the modeling and simulation theory deve
loped in the last decades (ZEIGLER, 1976; WYMORE, 1984). 

Interactivity is particularly attractive in the modeling of so-called ill-defined systems (INNIS, 1972; 
CELLIER & FISCID...IN, 1982; FISCID...IN & ULRICH, 1987). Typical for them is that essential por
tions of the mathematical properties of the studied system are poorly understood or even un-
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known. This is particularly true for environmental systems, which KARPLUS (1976) places in the 
middle of his model spectrum calling them grey-boxes. Compared with the black boxes on the 
one end of the spectrum their modeling appears attractive; on the other hand they lack the simplici
ty and.clarity of the white boxes on the other end. A full list of advantages of interactive modeling 
in the area of environmental systems has been formulated elsewhere (FISCI-ll...IN & ULRICH, 1987). 

The attractive interactive modeling and simulation are, the much it poses difficulties, since it requi
res the development of dedicated simulation software. Interactive programs have a structure radi
cally different from that of batch-oriented software (NIEVERGELT & WEYDERT, 1980; NIEVER
GELT & VENTIJRA, 1984; FISCI-ll...IN, 1986). The situation is furthermore complicated by the fact, 
that most simulation studies tend to develop very large computational demands, but sensible inter
activity requires that response times remain within certain limits. Hence the design of interactive 
simulation software must cater to the two conflicting goals of batch and interactive simulations at 
once. 

After having analyzed programming languages and programming styles in the context of simula
tion and studying current simulation techniques in much detail, KREUTZER (1986) concludes that 
existing simulation software largely ignores current computer science research. For instance the 
majority of simulation software has been and still is written with out-dated programming langua
ges poorly fit for their purpose. In a recently published catalog (ANONYMOUS, 1988) from 191 
world-wide listed simulation software packages 79% use Fortran, the rest either C or at best some 
object oriented extensions of C. In the bibliography of textbooks on simulation by KREUTZER 
(1986) 83% from the programming oriented books use Fortran or simulation languages which are 
Fortran precompilers. Precompilers separate the modeler only partially from the underlying imple
mentation language. Often either the simulation language reflects the spirit and concepts of the 
used implementation language, e.g. naming rules for identifiers, or it forces the modeler to use it 
sooner or later, in cases he/she wishes to program an unavailable algorithm. CELLIER (1979; 
1984b) claims that mainly due to the use of the programming language Fortran, the simulation 
software packages lack robustness. He argues that in order to increase the quality and reliability of 
the simulation software, one should use formally defined programming languages of type LL(1) to 
optimally support structured programming (BROOKS, 1979; WIRTH, 1985, 1986). 

On workstations interactive modeling and simulation concepts must be simple, user-oriented, and 
have to support modern graphical user interfaces including items such as menus (pull-down or 
pop-up), windows, scrolling of window contents, and selection or dragging of graphical objects 
etc. The latter requires adequate programming support such as structured data types, dynamic me
mory allocation respectively de allocation (heap-technique), recursion etc. (GUTKNECHT, 1983; 
FISCI-ll...IN, 1986; WIRTH, 1986) .  Some of the few programming languages which satisfy the re
quirement of formal definition and support a good programming practice are the procedural lan
guages Modula-2 (WIRTH, 1985, 1986) and Ada, or Oberon as an example for a formally defined, 
object oriented language (WIRTH, 198 8 ,  1989a, b). 

Finally aside from very few rare cases (OREN, 1984; V ANCSO, 1990) existing simulation software 
ignores the whole body of systems and modeling theory which has been developed during the last 
two decades (KLIR, 1979; ZEIGLER, 1976, 1979, 1984; WYMORE, 1984). Important for the mo
deling of environmental systems are the levels 1 (lORa) and 3 (System). On level 1 a system is 
defined by a time basis, the sets of the inputs, outputs, and input segments, plus the I/O relation 
relating outputs with input segments. On level 3 a system is similarly but in more detail defined by 
the additional set internal states, the state transition function mapping the product of inputs and in
ternal states to internal states, and the output function mapping internal states to outputs. Further
more the standard formalisms DESS (Differential Equation System Specification), DEVS (Discrete 
Event System Specification), and SQM (Sequential Machine) have been formulated to support fre
quently used classes of mathematical models. For a full summary see V ANCSO et al. (1987). 

From all this follows, that in order to meet todays requirements and to tap the potential of tomor
rows computer technology, a new modeling and simulation software has to be developed. There-
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fore we have dared to begin with the development of an interactive modeling and simulation soft
ware called RAMSESI particularly designed for nlodern personal computers and workstations. 
Our approach is user-oriented, i.e. a conceptual frame-work derived from research activities, to 
support interactive modeling and simulation. The software should be particularly well suited for 
the modeling of ill-defined dynamic systems (INNIS, 1972; CELLIER & FISCI-ll..IN, 1982) as often 
present in the environmental sciences (KARPLUS, 1976;). For the implementation we chose Mo
dula-2 as the programming language and based the software oq the Dialog Machine (FISCHLIN, 
1986). The RAMSES software architecture is based on systems and modeling theory and it sup
ports an object oriented working v/ith such concepts. This paper focuses on RAMSES' session 
concept. 

2 Interactive Modeling and Simulation with RAMSES 

RAMSES provides software support for the activities typically followed by a user who constructs 
and simulates models of ill-defined systems by grouping thenl into the four sessions (Fig. 1): 

Modelling 

Simulation 

J---__ ... t Experiment 
..----1 Definition 

Post 
Analysis 

Fig. 1: State transition diagram depicting RAMSES' four 
task oriented sessions (states) and the possible use� move
ments (transitions). 1) Modeling session resulting in the 
declaration of models, model objects and the formulation of 
model equations. 2) Experiment definition which consists 
of a definition of an experimental frame plus its association 
with a particular model definition. 3) Simulation session 
which produces model behavior. 4) Interactive postanalysis 
of previously computed simulation results. 

• Modeling session: This activity serves the declaration of models, model objects, and the 
formulation of model equations. A mathematical model (not to be confounded with a 
simulation model) defines a certain mathematical structure but not necessarily a particular 
time domain, parameter and initial value sets. 

• Experiment definition session: It consists of a specification of an experimental frame 
(ZEIGLER, 1976, 1979) plus its association with a particular mathematical model. Its 
result is at least an experimental frame or an experiment. The latter fully specifies a simu
lation model (not to be confounded with a mathematical n10del) which incorporates in 
addition to a mathematical structure also a particular time domain, parameter and initial 
value sets etc. 

• Simulation session: Given a particular experiment has been defined and a simulation mo
del exists, the simulation session is used to produce model behavior in time or space or 
both. Results can be saved for an analysis at a later point in time. 

• Postanalysis session: Simulation results previously computed during a simulation ses
sion, can be analyzed interactively without having to recompute any model behavior. 

Fig. 1 shows a state transition diagram of the meaningful and legal transitions among the RAM
SES sessions. Note that iterative model development cycles are supported by various paths. 

1 Acronym for Research Aids for the Modelling and S,imulalion of Environmental S,ystcms 
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For the user's convenience, sessions can be interrupted and resumed later in the same state they 
have been left any time. RAMSES has two user interfaces: The end-user interface and the client 
or programmer's interface. With only very few, but then intentionally introduced exceptions, any 
function offered by RAMSES can as well be executed via the end-user interrace interactively or via 
the client interface by writing a program. 

2.1 The Modeling Session 

The modeling session serves the declaration and installation of models, their n10del objects 
(Fig 2), and the formulation of model equations. 

A RAMSES model definition consists of at least one model and every model usually contains mo
del objects such as state variables, expressions, model parameters, output and input variables for 
submodel coupling, and auxiliary variables. Every model object can also be declared as a monito
rable variable. Not the output variables, which are reserved for the coupling of submodels, but 
only monitorable variables allow the user to display simulation results. In this respect RAMSES 
differs from the modeling theory by ZEIGLER (1976) or WYMORE (1984). RAMSES requires to 
associate with model objects certain real values such as derivatives respectively new values, para
meters, initial, minimum, or maximum values. The RAMSES interfaces were built such that man
datory values must always be provided while declaring a model object (Fig. 3). For the easier 
recognition and identification of model objects by the end-user there are also the optional attributes: 
long textual description, short identifier, and the unit string (Fig 2) . 

Model 

o expression result ......:1.18----

o Model parameter c � 

o Ouput variable ov 

o Input variable iv 

o AUXiliary variable av 

o Monitorable variable mv 

mandatory values 

� Max innial value 

i Iln�Ial value I I 
o Min initial value 

o I expressiop I 

o Max value 

�� 

I Min value 

Max value of interest 

Clipping range 

Min value of interest 

optional attnoutes 

ldescriPtor I ident I unit I 

Idescriptpr I ideo! I ynit I 

fjescnplor I Ident I unit I 

Idescrtptor I Ident I unit I 

Idescrlptor I ldent I unit I 

Idescnptor I KiOnt I unit I 

Fig. 2: A RAMSES model defini
tion serves the installation of models 
and model objccts (0): Model ob
jects are state variables plus their de
rivatives resp. new values, Illodel pa
rameters, expressions, auxiliary, mo
nitorable, input, and output vari
ables. 

The purpose of the model and nlodel object declarations is to make their associated real variables 
known to RAMSES. During simulations RAMSES will then n1aintain these values: E.g. it uses 
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the derivatives respectively new values (in case of discrete time difference equations) to compute 
and repeatedly update the values of the state variables (numerical integration). Otherwise RAM
SES ignores these objects and their values. This offers the modeler the potential to use them free
ly, e.g. in structured data types, in a nlanner which is rather problem adapted than forced by the 
idiosyncrasies of the used simulation technique. 

PROCEDURE DeclareSV (m: Model; VAR s, ds: REAL: initial, minRange, maxRange: REAL: 

descriptor, identifier, unit: ARRAY OF CHAR); 

PROCEDURE RetrleveSV em: Model; VAR s: REAL; VAR defaultlnit, minCurlnit, maxCurlnit: REAL: 

VAR descriptor, identifier, unit: ARRAY OF CHAR); 

PROCEDURE ModifySV (m: Model; VAR s: REAL; defaultlnit, minCurlnit, maxCurlnit: REAL; 

descriptor, identifier, unit: ARRAY OF CHAR); 

PROCEDURE UndeclareSV(m: Model; VAR s: REAL); 

PROCEDURE GetSV 

PROCEDURE SetSV 

(m: Model; VAR s: REAL; VAR curlnit: REAL); 

(m: Model; VAR s: REAL; curlnlt: REAL); 

Fig. 3: Excerpt from the client interface of RAMSES showing procedure declarations (they consist in Modula-
2 of a heading only). The listed procedures provide all RAMSES functions needed to work with state variables. 

There are three basic techniques by which modeling can be done within the RAMSES modeling 
session: 1) Via the client interface using the host p-rogramming language enriched with particular 
objects needed for modeling and simulation; 2) via an interactive end-user interface accessing indi
vidually by entry-forms the functions exported by the client interface in order to add (declare), mo
dify, and remove (undeclare) system theoretical objects (model and nlodel objects) from the model 
data base. 3) Via the Editing of a graphical representation, i.e. relational digraphs (Fig. 4), of a 
model system to support a Illore abstract view. Subsequently relations are specified by functions, 
i.e. declared as expressions, in a manner which resembles that used by the second technique. 

• 

• 

• 

• 

• 

• 

Fig. 4: Relational graph of a general system S 
represented as a 9-tuple of sets S = (XI' Xz, XQ, RI, 
R1Z' RZ! Rz o' Ro' RJo ). The universe ot the 
system X is partitioned. Into three sets: Set of state 
variables Xz' inputs Xl ' and outputs Xo' Where: 
� = {z I z trom z reachable }, Xl = (e I e � Xz /\ 
�:J Z: z E Xz /\ Z from c reachable)} Xo = {a I a 
� Xz /\ [(3 Z : Z E Xz /\ a from Z reachable) v ( 
3 e : e E Xl/\ a from e reachable)] }. Form from 
ordered pans within the system universe the 
following six structure sets: input structure RI = 

{(el'e.z) I cl'e2 E XL /\ (CJ ,C2) E RoL input-state
couplIng structure K1Z = l (e,z) leE XI /\ Z E Xz 
1\ (e,z) E RoJ, dynamic structure Rz = {(zl'z.2) I 
Zl,z2 E Xz /\ (zJ ,z� E RoJ, state-output-couphng 
structure Kzo = l (z,a) I Z E X.z ' a E Xo /\ (z,a) E 
Ro)' output structure Ro = (�al ,a2) I aJ ,a2 E Xo /\ 
(a1,az} E R�»), and input-output-couphng structure 
RIO = ( e ,a) leE XI /\ a E Xo 1\ (e,a) E RoJ. 
For the unifications Xl resp. Rr must hold Xl = 

Xl U Xz U X..o � 0 and RI = RI U R1Z U Rz U 
Rzo U Ko U KIO � 0 . 

The first technique is the most versatile one with the least restrictions; it even supports non-classi
cal formalisma like cellular automata or recursive model equations etc. However it is less conve
nient, since it requires programming. The third is most attractive, since it allows to support hierar
chical model structure 'editing: a node representing a subsystem can be collapsed or expanded into 
a separate window containing again the tuple of the subsystem or the supersystem. 
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Independent of the three ways the user chooses to work with, RAMSES applies always the same 
basic technique to manage models and model objects. They are installed or instantiated by calling 
declaration procedures, which allocate a memory block in the heap to store the object together with 
its associated values plus attributes. However, the actual objects like state variables or parameters 
remain fully in the scope of the user model definition. If the modeler uses the first modeling tech
nique via the client interface, this scope corresponds exactly to the scope concept in Modula-2. 
For instance state variables may be part of any data structure and may be used in any type of state
ment sequences such as e.g. recursion etc .. Moreover, models and model objects can be removed 
(undeclared) any time from the model and model object base or be edited in any way. All these 
functions are realized according to the same principle. Fig. 3 shows an excerpt from the client 
interface for all procedures needed to manage the model objects of the type s.tate Y..ariables. 

2.2 The Experiment Definition Session 

It consists of the specification of an experimental frame (ZEIGLER, 1976, 1979) plus its asso
ciation with a particular mathematical model. What results is a simulation model which contains 
no longer any missing concrete values necessary to fully specify e.g. an initial value problem. Fur
thermore a time domain or spatial domain for which the model behavior is of interest, and any 
other needed parameters such as integration method, maximum local error (absolute and relative) 
etc., have also been defined. 

Edit EHperiment 

Models 

Mod�l param��er values Id�n� 

Larch - Larch Bud Moth model bt Y3. 
511147.000 pI 

0.573 p2 
0.051 p3 

-0.179 p4 
-1154849.750 p5 
34445884.000 p6 

0.005 p7 
g p8 
g p9 
g pIa 
g pI I 
g pl2 
g p13 

0.425 pl4 

• • 
• • 
II II 

� 
� 
8jD 
o 0 
o 0 

~ 

Experimental frames 

Id�nt Param .. t .. r names 

Larch Bud Moth model bt Y3.0 (Larch 
nrt Numb�r of tnts 
01 E99 winter marta lih" 
c2 Slope of small1arvae mortality V! 

c3 V-int .. rc .. pt of small1arv<le marta 
c4 Slop .. of n .... dle biomass vs. rf 
c5 V-int .. rc .. pt of ne .. dl .. biomass vs. 
c6 Food demand of a lar9<' larva .. 
c7 Slop .. oflarge larva .. marta lily v� 
oS V-intercept of large larvae marta 
09 Sex ratio 
cIa c 1 0 (slop� of fecundity vs. rO 
cl I V-intercept of f.cundity VS. rf 
c12 Minimum rf 
c13 c 13 (minimum decrement of rO 
014 Maximum rf 
cIS Defoli .. tion threshold 
c16 Defoliation threshold of maximum 
c17 Branches per tree 

Fig. 5: Editing an experiment by combining a mathematical model with an experimental frame 
during an experiment definition session. A set of parameters defined during the modeling session 
have partly no defined values (11). Specific values with a concrete meaning are contained in the exper
imental frame. The user can now assign them to the parameters of the mathematical equations via 
connecting items from the experimental frame with parameters in the mathematical model similar to 
establishing a plug connection. The direction of the top arrow can be toggled and determines the di
rection of the assignment 

This session is user oriented, since the thinking in terms of an experimental frame or a particular 
mathematical model is much easier than to think always in terms of the ever exploding numbers of 
combinations of the two (Fig. 5). For instance is it much easier to keep track of a number of data 
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sets, each with its particular time donlain, and the number of alternative models which could at 
least hypothetically be applied. If mathematical model�.can be freely combined with experimental 
frames, a technique which has been proposed e.g. by OREN ( 1982), the definition and conlbina
tion of two members of these classes are easier to manage. 

There remains the issue of compatibility between a mathematical model and an experimental frame 
to be resolved. In RAMSES a mathematical model and an experimental frame are called compatib-:
Ie if their order is the same and the dimensions of the model parameter, input, plus output vectors 
are the same. RAMSES accepts an experiment or a simulation model for a simulation session only 
if the combination of model and experimental frame are fully compatible (s.a. Fig. 1). 

2.2 The Simulation Session 

The purpose of a simulation session is to produce model behavior in time or space or both by sol
ving a simulation model over a particular domain of the independent variables, normally tin1e. 
This is called an elementary simulation run. A complex shnulation experiment formed from sev
eral elenlentary runs is called a·structured sinlulation run. RAMSES allows either to directly exe
cute an elementary or a structured simulation ruo, each an arbitrary number of tinles (Fig. 6: k, n). 

Fig. 6: Structure and flow chart of a RAMSES simulation 
session. The simulationist may execute directly an arbi
trary number n of structured or of elementary simulation 
runs. A structured simulation (<<experiment») consists of a 
programmed number k of elementary simulation runs. 
Every simulation run consists of an Initialize run, dynamic 
(includes the sections Output, Input, plus Dynamic s.str.), 
and Terminate run. The dynamic section is executed accord
ing to the chosen time step and simulation time an arbitrary 
number of times i. Dark grey shaded areas: mandatory, i.e. 
must be defined by every model definition program; light 
grey shaded areas: optional and under full control of the 
modeler. 

RAMSES automatically assigns the initial value i to the state variable x at the begin of every 
simulation run, and the value p is assigned to the model parameter c at the beginning of the 
simulation session or after any interactive change (Fig. 2). RAMSES maintains also the current 
values of state variables, parameters, and monitorable variables and remembers their initially 
specified values for eventual restoration (so-called resetting). During simulation experiments the 
unknown values, which the monitorable variable mv may obtain, are written on the stash file, 
tabulated in a table, or displayed in graphs (Fig. 7). The latter is only the case if the values fit 
within a particular range of interest as specified by the modeler; otherwise they will be clipped. 

Often at the begin and at the end of an elementary simulation run particular actions must be taken, 
e.g. to initialize states or compute and record final results. The simulation environment of RAM-' 
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SES provides facilities to install such procedures (Fig. 6: Initialize run, Terminate run). Further
more in structured simulations, which typically execute several elementary runs, there is the pos
sibility to initialize and terminate the whole experiment. This may be particularly useful in the case 
of a stochastic model, where e.g. means, variances and other data collections ought to be calcu
lated from many runs (Fig. 6: Initialize experiment, Terminate experiment). Finally the whole 
simulation session may also require an initialization; this is provided in the simulation environment 
by allowing for the installation of an initialization procedure. 

A basic purpose of interactive simulation is to allow for the easy monitoring of the simulation re
sults by focussing on particular sensitive or otherwise interesting results in order to be able to tem
porarily halt or even interrupt the simulation. This is most useful in early stages of model devel
opment, where the user may want to abort a particular run quickly, once its main characteristics 
have become apparent. 
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Fig. 7: Typical screen of a RAMSES simulation session. The model shown is the larch bud moth 
system described in the text, in the graph its simulated behavior is compared with observations. 

For user convenience the simulation session of RAMSES allows also to change currently used pa
rameter values, scaling values for monitorable variables, initial values etc. This avoids having to 
quit completely the simulation session for a run just testing a particular parameter value. This can 
be considered as working in the simulation session just with a scratch copy of the whole model 
and its associated values, whereby the values specified within the experiment definition session 
can any time be resumed by a reset. Note that the reverse is also possible, i.e. they can be copied 
to the model definition and be stored as an experimental frame. The arising need for selection of 
models or model objects, e.g. to change the value of a specific parameter, is provided by the so
called IO-windows. Fig. 7 shows a typical screen of a RAMSES simulation session with the me
nu bar plus its menus, four lO-windows, the table, and the graph window. 

Since the user's monitoring is always restricted to a few variables, there arises the need, in particu
lar for long lasting simulations, to save the results for a later inspection and exploration. RAM-
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SES adopts the technique of the so-called stash file to temporarily save all potentially interesting 
results. The data are written according to a formally defined LL(1) syntax for easier scanning and 
parsing by the postanalysis program. This approach allows also to completely omit the control of 
the simulation by the end-user interface except for the initiation of a so-called structured simulation 
run (since it may consist of an arbitrary number of elementary runs it can be considered as a freely 
programmable, hence versatile form of batch-processing). For batch-processing the client inter
face can be used to program a structured simulation run, which may then even be executed on an
other machine, e.g. a super-computer, another currently unuseq workstation, a host serving as a 
simulation server, or a set of transputers within the workstation. 

2.3 The Postanalysis Session 

In the postanalysis session simulation results, previously computed during a simulation session, 
can be analyzed without having to recompute any model behavior. It serves the interactive explo
ration of model behavior even in cases where an interactive simulation of the results would last too 
long. Surprising results, e.g. in behavior of indicator variables, may be traced back to the tempo
ral behavior of other, internal system variables, thus often allowing for a better understanding of 
the system mechanisms. During such an exploratory data analysis of the simulation results, the 
visualization and the interactive testing of ad-hoc formulated hypothesis play an important role. 

In addition to the simulation results the stash file contains detailed information on the global pa
rameters of the simulation environment, on the model and on its model objects which have been 
used to produce the data. This allows the postanalysis session to inst<tll in RAMSES a model and 
its objects exactly as they have existed during the simulation session, except that the postanalysis 
model (IORO level 1) is not used to produce the model behavior but to read the already computed 
behavior from the stash file and display it for the user by using the ordinary RAMSES monitoring 
mechanisms from the simulation environment. The latter encompasses graphical representations 
(scattergrams, line charts with optional error bars, 3-dimensional grid plots, contour maps etc.) 
and the tabular display of numerical values. This approach has not only the advantage of reducing 
the implementation work, but also to be easier to learn by the user, since every RAMSES user will 
be familiar with at least the simulation environment (Fig. 7). Whether he/she actually uses the 
simulation or the post-analysis session to analyze the behavior of a complex model will be of mi
nor importance. 

To grant a virtually unlimited data exchange between the simulation session and the postanalysis 
session, the secondary storage medium containing the stash file is used to store the simulation re
sults. For an efficient access during the postanalysis session the organization of the stash file is 
crucial. We chose a formally defined LL(l) syntax, but otherwise it is a sequential text (ASCII) 
file. The latter is a compromise in terms of efficiency and the need for data exchange with other 
programs than just the' postanalysis session software. For instance spread-sheet applications, sta
tistical packages, or document processors can also open the stash file. 

More details on the EBNF describing the stash file syntax, the mathematics, and the internal 
structure of the postanalysis session can be found in GY ALISTRAS (1990). 

3 An Application Example from Population Ecology 

Population systems are used in many areas of the environmental sciences: for instance in ecotoxi
cological studies or in pest management. The larch bud moth system has been studied intensively 
for now over four decades and serves as a useful example to illustrate and evaluate RAMSES. 
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3.1 The population cycles of larch bud moth 

Larch bud moth, Zeiraphera diniana ON. (Lep., Tortricidae), is a univoltine forest defoliating in
sect, which periodically attacks larch trees in the European Alps between 1700 to 2000 m a.s.!. 
(BAL1ENSWEILER & FISCHLIN, 1988). The mean of the cycle length is 9.2 years and the average 
amplitude amounts to 226.9 larvae/kg larch branches (FISCHLIN, 1982; BALTENSWEILER & 
FISCHLIN, 1988). The ecological mechanisms causing these population cycles are only partly un
derstood and there exists a range of competing hypothesis postulated by numerous authors 
(FISCHLIN, 1980; BALTENSWEILER & FISCHLIN, 1988; CLARK et a1.1967; WILSON, 1975; AN
DERSON & MAY, 1982; MAY, 198 1). We evaluated and tested all hypothesis first for their plausi
bility by comparing their assumptions and statements with all known ecological facts and data 
from the 40 year study and secondly their capability to predict quantitatively the observed system 
behavior. The latter has resulted in a family of mathematical models (FISCHLIN & BALTENS
WEILER, 1979; FISCHLIN, 1982). Members of this model family have been implemented using 
experimental versions of RAMSES. The simulation session has been realized by embeding the si
mulation environment Mode1Works1 (ULRICH, 1987; FISCHLIN et al., 1990) in RAMSES. 

3.2 Using RAMSES to model the Larch Bud Moth System 

Several aspects of RAMSES, such as modular modelling, were important during the modeling and 
the simulation of the larch bud moth system. Members of the model family were modeled as sub
models in form of separate modules (level 3 System) and measurements were implemented as pa
rallel data-models (level 1 lORO) (Fig. 8). This allowed to compare simulated results with mea
sured and observed time series (Fig. 7). 

LBM 
Master 

Fig .  8: Module structure of the model definition program implementinJLlhe family of population 
models of the larch bud moth system. 0 (on t02) - program module; J,;J] - definition modules in 
front of implementation modules; � - imports; U - data files; c::J (on bottom) - module libraries. 

IModelWorks may be used independently from other RAMSES tools. i.e. the modelling and postanalysis session. 
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The modeling was done with the first technique via the client interface. The master module, the 
program module LBMMaster, combines all modules to a model definition program (Fig. 8). De
pending on the current user needs the corresponding submodels can be installed or deinstalled in 
the RAMSES model base. For instance note the following two submodels: The first submodel, 
module LLbmM od, describes the ecological interaction of the host plant larch (Larix decidua MIL
LER) with the herbivorous insect larch bud moth (2. diniana). The second, parallel data-submo
del, module ObsUE, mimics the real systenl by using field data from the Upper Engadine valley 
in Switzerland, which were sampled from 1 949 till the present (BALTENSWEILER & FISCHLIN, 
1988). At the begin of a simulation session the parallel data-submodel simply reads the observa
tions stored in a data file into the menl0ry and assigns the measured values during simulations to a 
monitorable variable, which the simulationist can compare with simulated results (Fig. 7). 

4 Discussion 

4.1 Strengths and Weaknesses of Interactive Modeling and Simulation 

Modeling and simulation of ill-defined systems substantially benefits from interactivity, since itera
tive system structure identification and systen1s behavior analysis are typical for these systems, es
pecially also in the field of environn1ental systems. Interactively connecting and disconnecting 
submodels, activating or deactivating models are powerlul while navigating through a model fami
ly which is only partially explored . Systernatic model combinations are only possible thanks to 
such an approach. 

The nlore advanced a study becomes, the more modeling will focus just on a few subsystems or 
processes. The strengths of interactivity is during the model development phase. Once the struc
ture of a model and its equations become relatively fixed, interactive modeling looses its attractivity 
and a rather batch-oriented simulation s tudy becomes predominant. The two interfaces of RAM
S ES,  the interactive end-user and the batch-oriented client interface, support these varying needs 
during the course of a study well. 

Especially in the modeling of ill-defined systems there becomes another disadvantage of interactive 
modeling apparent. It gets easily difficult to keep track of all involved objects and to keep a good 
overview. This is particularly true for the second technique (s.a. modeling session) where the mo
deler uses no relational graph editor and works directly on the models and model objects. There
fore hierarchical modeling becomes a necessity; unfortunately RAMSES does currently not sup
port real hierarchical modeling. The latter could be realized by an explicit subordination of sub
models which would not only be reflected in the module structure but also would be recognized by 
RAMSES . Implementing hierarchical modeling such that it starts always from a single root 
model, would also offer the advantage of steering the user towards a top-down model design. 

Disadvantages of interactive simulation beC0I11e also particularly evident if computational needs are 
big. The more complex a model, the larger the conflict with the patience of the user, because. the 
simulationist can only watch a more and more limited selection of the results. For complex sys
tems the interactive simulation degenerates too often to a monitoring of a few, uninteresting indica
tors, the actual results remaining hidden. Not only does this call for the separation of the simula
tion and the post-analysis as realized in RAMSES, but also offers the advantage of a transparent 
use of computing servers, such as a simulation server or a super computer. RAMSES' session 
concept appears to optimally support such solutions; for instance, except for restrictions inherent 
to the programming languages available on the Cray-XMP, did we encounter t:lo fundamental diffi
culties when experimenting with a super-computer implementation of the RAMSES simulation en
vironment for structured simulation runs . Except for the simulation session, which may be trans-
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ferred to a simulation server, all other sessions remain on the workstation and can there profit from 
the available interactivity. This unites and allows to have the best of both worlds, the world of the 
batch-oriented hosts, strong in nun1ber crunching, and that of the workstations, strong in interac
tive use. 

Some rather technical, implementation problems shall also be mentioned: Against common expec
tations, continuous consistency checking during interactive editing is often impossible, since users 
violate consistency while editing all the tin1e: E.g. a first portion of an entry may already have 
been typed, a second not; a completely normal, but inconsistent situation, since some terms n1ay 
already have been referenced, but are not yet present. Due to the difficulties to have a good over
view when working with ill-defined systems, however, it would be crucial to have the computer 
perform consistency checks. Thanks to the state diagram of RAMSES' session concept (Fig. 1), 
a solution could be found, namely if the model definition and the experimental frame are not-com
patible, RAMSES rejects the transition from the modeling or experiment definition session into the 
simulation session. Inasmuch expert systems could really help to support the modeling process 
and consistency testing is currently not well understood. We have experimented with little expert 
systems, but only achieved disappointing results; just complete novices could really profit from the 
available advices. 

Compared with previous implementations of the presented model family made with more cumber
some simulation tools (FISCHLIN & BALTENSWEILER, 1979) or commercially available simulation 
software (Marr, 1989) indicate that RAMSES is not only efficient and elegant, but also tends to 
support the user in such a way, that results are obtained in a more systematic manner. This has 
several reasons, but among the n10re important ones is certainly the choice of the programming 
language Modula-2. 

Thanks to Modula-2, RAMSES supports elegantly a modular implementation of the members of a 
model family. Each submodel forms a self-contained unit, typically a Modula-2 module, yet they 
may exchange informations by la-links. E.g. in the presented example relationships between sub
models, such as the computation of initial states from observations, could be implemented with 
output to input coupling (Fig. 8). All model equations, no matter how complicated or of which 
form, could also be elegantly implemented; e.g. the migration model uses recursion to model spa
tial orientation and moth flying behavior (FISCHLIN, 1982). 

The power of the programming language used to implement RAMSES has shown to be most suit
able to achieve our originally set goals, because it supported modular and structured programming 
and helped to irnplement efficiently the software tools needed for the interactive exploration of mo
del behavior. Moreover the RAMSES user profits as well, e.g. a sensitivity analysis could be im
plemented by progran1ming a few lines of code and installing the executing procedure as a structu
red simulation run; the testing of pesticide applications or the heuristical design of a Inanagernent 
scheme were also straightforward and easy to realize. 

Much effort had to go into the design of a software system which is attractive for the beginner as 
well as open enough for the specialist who is interested in advanced techniques. This resulted in a 
basic symmetry between the end-user and the client interface. However, in case of conflict we op
ted rather for an optimally open system structure, than for the ease of use for the beginner, who is 
more likely to use just the end-user interface. These design goals are reflected e.g. in the maximal 
functionality of the client interface. Building on a solid model-based foundation and adding later 
front-end modules for easier use of the interactive end-user interface by beginners seemed to be an 
appropriate development strategy. It offered also right from the begin the sophisticated user opti
mal access to RAMSES. Offering both, the end-user and the client interfaces simultaneously has 
also the advantage that the user may smoothly transgress from major reliance on the end-user inter
face to the client interface by implementing step-wise more and more elaborate tasks, such as stati
stical analysis of data collection from many runs or parameter identification techniques etc. This 
way the risk to loose investments in complex model implementations can be kept minimal. 
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RAMSES demonstrated also that modeling and simulation software have to be tightly coupled. In 
particular interactive modeling and simulation require a common kernel managing dynamically mo
dels, model objects, and associated values in a model base accessible by both the modelling and 
the simulation sessions. The heap technique we adopted to achieve this behavior was surprisingly 
efficient: Compared with more traditional simulation software architectures the efficiency losses in 
computational speed were on the average as little as 1 0-20% (s.a. ULRICH, 1 9 87). 

An important disadvantage of RAMSES is of course the rather big software development effort. 
However, it appears to be unavoidable, since the new concepts required a substantial rewriting or 
at least restructuring of existing simulation software. For instance modular modeling required to 
implement integration algorithms anew. This is because the IO-links among submodels must be 
calculated before the numerical integration of differential equations. The user interface develop
ment is often underestimated and forms the dominant fraction of a rigorous, user-friendly interac
tive program. However, designing a good man-machine interface can be crucial for the final qual
ity of a software. Only thanks to the Dialog Machine (FISCHLIN, 1 986) could these efforts be mi
nimized and the port of the simulation environment ModelWorks to another target machine, given 
a Dialog Machine was' available, could be accomplished in only a few days labor. 

Finally either the design as well as the use of the RAMSES tools were facilitated by the modelling 
theory. This is because the software archi tecture could be based on a model base kernel. It provi
des the installation (or dein stallation) of systems theoretically well u nderstood obj ects,  such as 
state variables or model parameters etc .  Furthermore the user is assisted in or even gu ided to 
adopt a struc tured modelling approach. RAMSES recognizes and hence maintains values only if 
they conform to the mathematically defined concepts of the standard model formalisms SM, 
DES S ,  or DEVS . Yet this does not  prevent the modeler from using rather unconventional forma
lisms such as recursion. 

4 .2 P e r s pe ct i ves 

Since workstations and personal computers become increasingly popular and ever more powerful, 
interactive modeling and simulation appear to gain rapidly in importance for the analysis of ill-de
fined systems. This is particularly true in the field of environmental systems, where much remains 
to be done. Although heuristic approaches still dominate the field, and not all concepts are yet well 
understood; it seems that progress can be achieved along the described lines. In order to improve 
the health of our environment it is hoped that the modeling of environmental systems will not just 
remain a highly specialized activity reserved to a few specialists, but will actually contribute to the 
better understanding and solving of environmental problems. 
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