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1. Introduction 
 
 
The courseware "Stability" comes with this text and a learning program that allows students to get familiar with the 
fundamental concept of stability, in particular the stability of ecological systems.  
 
 
1.1 Theme and purpose of the courseware  
 
The concept of stability plays an important role in the field of ecology, especially population ecology, as many 
living systems are said to have the ability to self-regulate.  The purpose of this introduction to "Stability" is to 
provide a precise understanding of the term stability and the associated system properties. Following features of 
the learning program serve this purpose: The behavior of three different predator-prey models, each with different 
stability properties, can be simulated.  All boundary conditions of the simulation can be selected or changed by the 
user interactively, via menu commands, at any time.  In particular, each model system can be exposed to 
perturbations of selectable magnitude in order to be able to investigate the stability behavior not only in the case of 
initial value variation, but also under continuous perturbations.  The output of the system behavior (simulation 
results) is done graphically in a tailorable special three-dimensional representation on the screen. That flexible 
representation helps to understand the model behavior in time and state space. 
 
All three predator-prey models have a steady state, i.e. a singular equilibrium point.  From model to model, this 
equilibrium differs in its stability properties: asymptotic stability, neutral stability, and unstable singularity.  Based 
on the simulations that can be carried out with the three given model systems, the student will now experimentally 
investigate the stability behavior of these systems.  For this purpose, the initial values of the state vector or the 
extent and frequency of the perturbations can be varied (the models are fixed, i.e. model parameters in particular 
cannot be changed).  In order to be able to detect possible influences of numerical integration and distinguish them 
from actual stability properties of the mathematical model, the program "Stability" allows the use of different 
numerical integration methods.  Hereby the importance of the accuracy and efficiency of different integration 
algorithms can also be clearly demonstrated. 
 
 
1.2 Learning objective 
 
Recognize the different stability properties of simple model predator-prey systems.  In particular, the terms 
asymptotically stable, neutrally stable and unstable equilibrium should become clear and well understood. The three 
types of stability properties are then also to be assigned to each of the three mathematical models given by the 
corresponding system equations. 
 
 
1.3 System requirements (hardware and software) 
 
The program has been programmed in Modula-2 (MacMETH version 2.6), based on the "Dialog Machine" © 
(version 1.1), and runs on any Apple Macintosh ® with a main memory of at least 512 KByte RAM (random access 
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memory).  1An external floppy drive is not required. The program is available as a stand-alone application 
("double-clickable") and does not require any other special software in addition to the system software (standard 
character sets) that is by default available on every Macintosh.  A printer (ImageWriter I or II or LaserWriter) is 
advantageous in order to be able to record certain simulation runs on paper.  However, the learning objective can 
also be achieved easily without printing of any simulation outputs. 
 
 
 
2. Theory 
 
 
2.1 On Stability and Stability analysis 
 
There exist different definitions of the term stability.  Of particular interest are the stability properties of 
equilibrium positions of nonlinear, time-invariant systems, i.e. systems of the form:  x(k+1) = f(x(k)) or dx(t)/dt = 
f(x(t)).  For example, the stability of the equilibrium position x° according to Lyapunov for the listed class of 
systems can be defined as follows: Given the domain G(x°, R) in the state space.  In its center is the equilibrium 
position x°. G includes all system states with the Euclidean distance ∂ of x°, so that ∂ ≤ R.  For second-order 
systems an illustrative, geometric interpretation of this concept is shown in Fig. 1: In this special case, the state 
space corresponds to the drawing plane.   
 

 

 
 
 

Fig. 1: Geometric illustration of various stability concepts for the special case of a second-order system 
with an equilibrium (steady state) point x°: Case a) x° is asymptotically stable as all trajectories lead back 
to the equilibrium x°; Case b) x° is neutrally stable (marginally stable) as trajectories no longer lead back 
to the equilibrium x°, although trajectories stay within the limited finite domain G2= G(x°, R);  Case c) 
x° is unstable as trajectories lead completely away from the equilibrium x° and end outside any finite 
definable domain. For both cases a) and b) x° is called Lyapunov stable. 

 
 
 
An equilibrium point x° is Lyapunov stable if the following conditions are satisfied by the system behavior: There 
is at least one Ro > 0 such that for every R < Ro there is an r between 0 and R, so that all subsequent system states 
x(k) or x(t) remain within the region G(x°, R), even if the initial state x(0) remains within G(x°, r).  To put it less 
formally: If the initial state x(0) is close to a stable equilibrium point x°, then subsequent system states remain close 
to x°. x° is asymptotically stable if there is also an R, so that whenever x(0) lies within G(x°, R), the state x(k) or 
x(t) strives with increasing time k (or t) towards the equilibrium point x°.  x° is unstable if it is not stable according 
to Lyapunov, i.e. there is an initial state x(0) within the region G( x°, r) so that at least one subsequent system state 
x(k) or x(t) with k > 0 or t > 0 outside the region G(x°, R) (0 > r > R).  Asymptotically stable always implies stable 
according to Lyapunov, but not the other way around.  An asymptotically stable equilibrium point is called a stable 
spiral point or spiral sink.  It is surrounded by trajectories, all of which lead asymptotically back to it, similar to 
a spiral or vortex.  An unstable equilibrium point is called an unstable spiral point or spiral source.  It is 
surrounded by trajectories that no longer lead back to the equilibrium, but only away from it.  There exist also 
equilibrium points which are unstable and stable at the same time, e.g. a saddle point. Finally, Neutrally or 

 
1 The learning program still runs on modern systems using an emulator. Available at www.sysecol.ethz.ch  

https://www.sysecol.ethz.ch/
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marginally stable is the marginal case between asymptotically stable and unstable. Such an equilibrium point is 
still Ljapunov stable, as once perturbed, the surrounding trajectories stay nearby the equilibrium point but do never 
return to it nor go further and further away from it as would be the case for an unstable equilibrium point. Thus x° 
is neutrally stable if and only if x° is stable according to Ljupunov, but not asymptotically stable. In the case of a 
second-order system the trajectories typically form so-called limit cycles enclosing the equilibrium point. 
In the stability analysis of a given model system, the most expedient way to proceed is to first identify any 
equilibrium points that may exist.  An equilibrium corresponds to a system state, i.e. point x°, in which the system 
no longer shows any changes, i.e. no changes in any of its state variables.  Such a point is thus also called a 
stationary solution, a steady state, or a fixed point of the system.  This means for discrete time systems that the 
differences of the difference equations given in canonical form or for the continuous time systems that the 
derivatives of the differential equations given in canonical form are all equal to zero at such a point.  Mathematical 
transformations can then be used to derive for each individual state variable the function that fulfils that condition.  
The intersections of all these functions represent equilibrium positions of the entire system, i.e. equilibrium points.  
For example, the positive differential equation system given here in canonical form (ordinary differential equations) 

 
dx1/dt  =  a x1 - b x12 - c x1x2 
dx2/dt  =  c' x1x2  - d x2 
 
where a>0, b>0, c>0, c'>0, d>0 and  x>0 (system positive) 
 

contains two equilibrium points, which can be derived as follows: dx1/dt = 0 results in x1 = 0 (trivial solution, entire 
ordinate) and 0 = a - b x1 - c x2  (non-trivial second solution). The latter can be formulated as  x2 = -b/c x1 + a/c, 
which represents in the two-dimensional state space x2 vs. x1 a straight line with a negative slope -b/c and the 
intercept a/c (Fig. 2). Along that line x1 does not change.  From dx2/dt = 0  ==>  x2 = 0 (trivial solution, entire 
abscissa) and 0 = c' x1x2 - d x2 (non-trivial second solution).  The latter can be formulated as  x1 = d/c', which 
represents in the two-dimensional state space x2 vs. x1 a vertical straight line starting from point [d/c’,0] (Fig. 2). 
Along that line x2 does not change.  The intersections of all these equilibrium functions correspond to the sought 
equilibrium positions: The trivial solution is a fixed point at the origin [0,0] and the non-trivial equilibrium position 
is the fixed point x° = [d/c', a/c - bd/cc'], i.e. the point where the two lines cross (Fig. 2).   
 
 

 
 
 

Fig. 2: Equilibrium positions or fixed points in the state space of a nonlinear differential equation system 
of the second order (Lotka-Volterra predator-prey model). 

 
 
In a second step, investigate the properties of the derivatives dx1/dt or dx2/dt in state space near the found 
equilibrium functions (Fig. 2, 𝑥1̇ = dx1/dt = 0 or 𝑥2̇ = dx2/dt = 0).  This can be done, for example, by adding or 
subtracting an arbitrarily small number h from the independent state variable in the determined equilibrium 
functions dx1/dt = 0 or dx2/dt = 0.  For example, substituting x2 in dx1/dt by x2 + h = -b/c x1 + a/c + h yields: dx1/dt 
= - cx1h < 0 for any h > 0 und dx1/dt > 0 for any h < 0.  Analogously, substituting x1 by x1 + h = d/c' + h in dx2/dt, 
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results in: dx2/dt = hc'x2 > 0 for any h > 0 and dx2/dt < 0 for any h < 0.  Fig. 2 shows the four emerging regions 
(𝑥1̇<0 AND 𝑥2̇<0; 𝑥1̇>0 AND 𝑥2̇<0; 𝑥1̇>0 AND 𝑥2̇> 0; 𝑥1̇<0 AND 𝑥2̇>0) around the non-trivial fixed point x° listed 
with the corresponding properties of the two derivatives dx1/dt = 𝑥1̇  and dx2/dt = 𝑥2̇  respectively.  This 
information now allows to make a first estimate of which directions the trajectories follow in the state space (Fig. 2, 
gray arrows). 
 
In a third step, the stability properties of the determined equilibrium points are investigated. A powerful 
method to examine these properties in detail is the first method of Lyapunov.  Here, the nonlinear system is 
linearized at the equilibrium points in order to investigate the stability properties of the linear system instead of the 
nonlinear system.  In most cases, this approach allows to draw valid conclusions about the stability properties of 
the equilibrium points of the nonlinear system.  Liapunov's first method proceeds as follows: First, the so-called 
Jacobi matrix J is determined at the equilibrium position x° for the nth-order system, which is given in the form 
x(k+1) = f(x(k)) or dx(t)/dt = f(x(t)). This is accomplished by partially differentiating each function of the function 
vector f with respect to the state variables. Any remaining state variables are replaced by the specific values of the 
stationary solution, i.e. the equilibrium point x°.  

 
 æ ∂f1/∂x1 ∂f1/∂x2 ... ∂f1/∂xn ö 
 ç ∂f2/∂x1 ∂f2/∂x2 ... ∂f2/∂xn ÷ 
J = ç ∂f3/∂x1 ∂f3/∂x2 ... ∂f3/∂xn  ÷ 
 ç ...     ÷ 
 è ∂fn/∂x1 ∂fn/∂x2 ... ∂fn/∂xn ø 

 
The result is a matrix, which can be interpreted as the system matrix of the linearized system at the equilibrium 
point x°. It determines the dynamics of sufficiently small deviations e of the system state from the equilibrium 
position (first term of a Taylor series expansion):  

 
x(k)  ≈  x°  +  e (k) or. x(t)  ≈  x°  +  e(t) 
 

This relationship shows that the stability properties of the following linear system can be used to determine the 
stability properties of the nonlinear system at the equilibrium point and its vicinity:   

 
e(k+1) = J e(k) or. de(t)/dt = J e(t) 
 

From linear system theory we know that in the discrete time case, all eigenvalues of the Jacobian matrix J at the 
position x° must have an absolute value < 1 or, in the continuous time case, all eigenvalues must have a negative 
real part in order for x° to be asymptotically stable.  If, in the discrete time case, at least one eigenvalue of the 
Jacobi matrix J has an absolute value > 1, or in the continuous time case at least one eigenvalue has a positive real 
part, then x° is unstable.  Note, in case of complex eigenvalues the imaginary part is always bounded in its 
magnitude and can therefore never decide over the question whether x° is stable or unstable.  It indicates rather 
whether we have oscillatory behavior of the system near the fixed point.  Finally, in marginal cases, i.e. the absolute 
value of an eigenvalue is 1 or the real part of an eigenvalue is 0, then it is no longer possible to draw firm conclusions 
from the properties of the linearized system to those of the nonlinear system.  Then additional terms than just the 
first of the Taylor series expansion may have to be included in the analysis and this reminds us of the fact that in 
the case of a non-linear system, the vicinity within which x° can be considered stable, is generally limited.  To 
determine the size of that vicinity, i.e. the stability range G(x°,R) surrounding the equilibrium point x° (Fig. 1), 
further steps need to be taken, steps we do not introduce here as this would go beyond the scope of this courseware.  
Nevertheless, in general it is safe to say that the stability properties of the linearized system apply at the equilibrium 
point x° itself and in the very immediate vicinity of that point.   
 
 
2.2 Ecological Examples 
 
To date the stability behaviour of entire ecological systems has been studied in detail only in a few cases.  In this 
context the rather spectacular study of Embree (1966) in Nova Scotia, Canada offers interesting insights.  To 
control the winter moth Operophtera brumata L, which caused severe damage to eastern Canadian orchards, the 
parasitic wasps of the species Cyzenis albicans and Agrypon flaveolatum were introduced.  After an initial transient 
phase during which the pest population started to collapse, these parasitoids managed to keep the pest densities at 
low, no damage causing levels, levels which were maintained thereafter for at least two decades (Fig. 3).  In other 
words, after the initial disturbance due to the parasitoids, the trajectory gradually settled down to a new equilibrium 
position.  The phase portrait of this system shows similarities to a spiral where trajectories lead towards a centre. 
 
Interesting investigations have also been carried out for a number of laboratory systems.  For example, the 
extremely interesting study by Luckinbill (1973), is the very first evidence for the periodic population cycles long 



Learning programme "Stability" 

5 

previously predicted by Lotka (1925) and Volterra (1926) (Fig. 4).  The periodic solutions seem to lie on almost 
closed trajectories or limit cycles. The phase portrait resembles that of a so-called vortex, but one where the 
trajectories do not get gradually closer to the centre, but surround it forever in a circular motion. 

 
 
 

 
 
Fig. 3: Behaviour of the winter moth Operophtera brumata , a pest which caused damage to the orchards 
of Nova Scotia, Canada, at the beginning of this century, and its parasitoids Cyzenis albicans and Agrypon 
flaveolatum.  Since the introduction of the parasitoids, presence first time verified in 1954, the pest 
population has remained at the shown low values thereafter for decades (according to Varley et al., 1973). 

 
 
 
 

 
 

Fig. 4: Behaviour of a ciliate predator-prey system in the laboratory.  The prey species is the ciliate 
Paramecium aurelia (____) the predator Didinium nasutum (------).  This cyclic behaviour was only 
achieved after adding movement-inhibiting methylcellulose to the medium in which the ciliates live 
(according to Luckinbill, 1973). 
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Thirdly, unstable behaviour has also been found: Here the classical modelling approaches of Nicholson and Bailey 
(1935) and the experiment by Burnett (1958) (Fig. 5) have become quite famous.  They show that host-parasitoid 
fluctuations can lead to mutual amplification of those fluctuations until collapse. 

 
 

 
 
Fig. 5: Behaviour of the host and parasitoid populations, the whitefly Trialeurodes vaporariorum and its 
chalcid parasitoid Encarsia formosa during 22 generations (according to Varley et al., 1973). 

 
 
 
 
2.3 Further Reading and References 
 
General, further reading on the stability of systems: 
 
 [1] Lecture notes, stability 
 [2] LUENBERGER, Ch. 9.2, 9.3 pp. 320-324 
 [3] LUENBERGER, Ch. 10.3 pp.370-374 
 [4] LUENBERGER, Ch. 5.9 pp. 154-159 
 
 
Special, cited literature: 
BURNETT, A.A.  1958.  Effects of natural temperatures on oviposition of various numbers of an insect 

parasite (Hymenoptera, Chalcididae, Tenthredinidae).  Ann. ent. Soc. Am. 49:55-59. 
EMBREE, D.G.  1966.  The role of introduced parasites in the control of the winter moth in Nova 

Scotia..  Can. Ent. 98: 1159-1168. 
LOTKA, A.J.  1925.  Elements of physical biology.  Baltimore: Williams and Wilkins. 
LUCKINBILL, L.S. 1973.  Coexistence in laboratory popualtions of Paramecium aurelia and its 

predator Didinium nasutum.  Ecology 54: 1320-1327. 
LUENBERGER, D.G.  1979.  Introduction to dynamic systems - Theory, models, and applications.  

New York op. cit., John Wiley & Sons, 446pp. 
NICHOLSON, A.J. & BAILEY, V.A. 1935.  The balance of animal populations.  Proc. Zool. Soc. Lond. 

3: 551-598. 
SMITH, M.J.  1974.  Models in ecology.  Cambridge, Cambridge University Press, 146pp. 
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VARLEY, G.C., GRADWELL, G.R. & HASSELL, M.P. 1973.  Insect population ecology. Oxford, 
Blackwell Scientific Publications, 2nd ed., 212pp. 

VOLTERRA, V. 1926.  Variazione e fluttuazioni del numero d'individui in specie animali conviventi.  
Mem. Accad. Nazionale Lincei (ser. 6) 2: 31-113. 

 
3. Program description 
 
 
The program "Stability" is used for the interactive numerical simulation of three different model systems each 
having different stability properties. Simulation results are shown in graphs that the user can taylor to her needs 
freely, experiencing the system behavior from many different perspectives. At the core is a 3-dimensional view 
onto the temporal evolution of the state space predator vs. prey. The user can intervene in the processes anytime 
and alter views while observing the dynamics, the strength of interactive simulations. 
 
All program activities can be called up via menus. The program works with a non-movable window of constant 
size showing by default three axes: One shows the population size of the prey, one that of the predator and the third 
represents time. The result is a 3-dimensional view onto the dynamics of the currently selected model system. The 
axes of the coordinate system can be moved, their scales changed, or the axis can be set to overlap, allowing to 
obtain also a 2-dimensional view. In addition, there are dialog windows that can be opened via the corresponding 
menu commands. They allow to control what is happening, e.g. to enter simulation parameters such as maximum 
time for the simulation, frequency of perturbations, and many other parameters and settings.  
 
Three predator-prey models (simulation models 1, 2, and 3) are available in the program. For each the initial values 
of the state vector can be varied, and the system can be exposed to stochastic, normally distributed perturbations 
simulating natural disturbances. The 3-dimensional coordinate system can be adjusted with the interactive 
coordinate system editor (CS-editor). Moreover, some simulation parameters can be edited freely, including the 
numerical integration method. A little help window is also available from within the learning program. 
 
At any point in time the learning program is in one of following three main states (Fig. 6):  
 

-  Idle, i.e. waiting for a user input 
-  Simulating 
-  Editing some settings, e.g. the coordinate system 

 
 

 
Fig. 6: State transition diagram of learning program "Stability". Shown are the possible program states 
with the related user actions and the arrows representing the possible transitions between states. The most 
important states are shown with a thicker frame. 
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Initially the program is in the idle state and does nothing. It just waits for the user to choose a menu command or 
press a keyboard shortcut. To launch a simulation with the current settings the user chooses the menu command 
“Simulation → Start Simulation (Run)” or the keyboard shortcut ⌘^R. The program starts to numerically solve 
the model from the current initial state and remains in the "Simulating" state until it reaches the end of the simulation 
time or the user aborts the simulation run (kills it, e.g. with ⌘^K). The program then resumes the idle state. During 
editing of some settings, e.g. the coordinate system is edited (⌘^E), the program is in an editing state that needs to 
be completed (OK button) or exited (⌘^T) to resume the idle state or continue the interrupted simulation run 
(Fig. 6). 
 
A simulation run is defined by various parameters. Among them are the initial values for predators and prey (⌘^A), 
the end time for simulations, time step, and the numerical integration method. All these settings can be changed 
freely.  It is also possible to choose between deterministic and stochastic (explicit inclusion of random events) 
simulations. Stochastic simulations add normally distributed perturbations that alter the state vector. The frequency 
of such disturbances and their magnitude in percentage of the current state can be chosen (deterministic simulation 
means a disturbance probability of zero). If a particular disturbance should result in negative values for the prey or 
predator population, a zero value is automatically used instead as in reality exist no negative populations. The 
simulated disturbances, which can increase or decrease populations can be interpreted to represent the influence of 
weather modifying reproduction or mortality or any other impacts on the system from the outside, the so-called 
natural disturbances such as fire or trampling by large mammals.  
 
The output values that are calculated during a simulation run (time, number of predators and prey) are by default 
displayed in a three-dimensional coordinate system that can be freely edited. A total of four different curves can be 
displayed: Prey vs. Time, Predator vs. Time, Predator vs. Prey (State Space) and the three-dimensional curve Prey 
vs. Predator vs. Time (by default off). The display can be changed freely using the coordinate system editor. Since 
this program is mainly intended to convey qualitative relationships (stability properties), a tabular representation of 
the computed numerical values has been omitted. 
 
 
 
4. Operating Instructions 
 
 
4.1 Tutorial 
 
After starting the program, the screen presents itself as follows: At the top is the menu bar, with the "Apple" to the 
very left and the program menus. Below that appears the working window with an empty three-dimensional 
coordinate system showing the prey, the predator and the time axis sparsely labelled with some scale value to avoid 
a cluttered view, yet giving you an idea about the current scale of each axis. 
 
Start a first simulation with all default settings by choosing the menu command “Simulation → Start Simulation 
(Run)”. Alternatively use the keyboard shortcut ⌘^R (for Run). As the simulation progresses the program shows 
you now the three curves prey and predator vs. time, and predator vs. prey (state space). 
 
Then make the second model active by choosing the menu command “Models → Model 2” and run another 
simulation with keyboard shortcut ⌘^R. In the same graph, you can now compare the behavior of the two models. 
They show quite contrasting stability properties.  
 
Activate now the editor of the coordinate system by choosing menu command “Graph → Edit Coordinates (CS 
Editor)” or press keyboard shortcut ⌘^E.  You can choose a new display by clicking on the end points of the 
axes, the origin or one of the scale points and moving them on the screen while keeping the mouse button pressed 
down.  Release the mouse button at the desired position.  For example move in this manner the point near the 
label 10 on the time axis and move it along the time axis towards you, i.e. to the right and release the mouse button 
once the point has crossed roughly the middle of the time axis.  Then exit the CS-Editor with menu command “CS-
Editor → Terminate CS-editing“ or press ⌘^T.  Note, the simulation results previously computed are now 
redrawn and you have now zoomed into the graph by having a closer view near the origin.  

Understand also that you can move the point near the number label of an axis beyond the small tick marks 
shown at both ends of the axis.  This alters the scale of the entire axis and increases or decreases the scale by a 
power of ten.  Try it out by moving the point near label 10 on the time axis towards the origin until the point is 
between origin and the tick mark.  Note, the label of the time axis jumps to the value 100.  Note, if you try to 
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move a point outside the allowed range, the move is ignored and the coordinate system remains unchanged.  If the 
point disappears keep the mouse pressed until the point is reshown.  Legal areas are those where the point is shown.  
To see now simulation results for that lengthened time axis you need to set a longer end time by choosing menu 
command “Simulation → End time…”.  Set the value to 200, click button OK and run the simulation with ⌘^R.  
To gain a closer view of the state space predator vs. prey press ⌘^E to edit the coordinate system once more.  
Grab and move the end of the prey axis X until it is horizontal.  Then grab and move the origin towards the right 
bottom corner of the screen.  Exit the CS-editor ⌘^T to see the curves in the state space better.  Perhaps also 
select Model 2 (see above) and run a simulation ⌘^R.  In any case, familiarize yourself with the way the CS-
editor works by trying out the learned commands some more to obtain other views, e.g. prey and predator vs. time. 
 
To continue working, reset the program by choosing menu command “Control → Reset all”.  Perform the two 
simulation runs again as described at the begin, i.e. a run for Model 1 and a second run for Model 2.  
 
Now, let's say you want to examine the trajectories in state space (predator vs. prey) of the first two models in the 
traditional X-Y view in more detail.  Use the CS-editor ⌘^E to define the desired view: Once in the CS-editor 
click on the end point of the time axis t and move this point until the time axis t points approximately to the bottom 
left.  Then move the end point of the prey’s axis X to the right until it is horizontal, i.e. it becomes an abscissa, and 
forms a right angle to the vertical predator's axis Y.  Remember, if you try to move a point outside the allowed 
range, the dragged point disappears and if the mouse is then released, the move is ignored and the coordinate system 
remains unchanged.  Finally move the origin to the lower left corner.  The display should now look something 
like a simple, two-dimensional graph with the horizontal X-axis (prey) going from the left origin to the right and 
the vertical Y-axis (predator) going from the origin vertically upwards.  After exiting the CS-editor ⌘^T, the state 
curves of both simulation runs are redrawn.  Adjust the scale of the prey axis X by ⌘^E and moving the point 
near label 1.0E4 slightly to the right until the trajectories make good use of the shown state space. 
 
Change the initial values, i.e. the initial state of the system, for the current model 2 by choosing menu command 
“Simulation → Initial Values…” or press ⌘^A.  E.g. enter 10’000 for the prey and 900 for the predator, click 
button OK and run another simulation ⌘^R.  What changes? 
 
The program allows also to perform stochastic simulations.  The states, i.e. either prey and/or predator, are 
stochastically altered due to random, normally distributed disturbances.  Clear the graph with menu command 
“Graph → Clear graph” or press ⌘^B, select Model 1 (“Models → Model 1”) and run a simulation ⌘^R with 
the set parameters as a reference.  Then choose menu command “Simulation → Perturbations…” and enter the 
following values: Enter for “Probability of perturbation during an integration step” value 1.0, for “Coefficient of 
variation of the perturbation (in %)” value 3.0.  Note, the coefficient of variation is the standard deviation of the 
perturbation expressed in % of the current value of the state variable.  And the probability of perturbation during 
an integration step is the probability for such a change actually to happen.  Click button OK and start a new, now 
stochastic simulation ⌘^R.  What do you notice?  You may wish to adjust the scaling with the CS-editor ⌘^E, 
by moving the scale label point of the X-axis (prey) slightly to the right, press ⌘^T and repeat, perhaps also for 
the ordinate, until the view satisfies you.  Press ⌘^R to run another simulation.  Note, repeating the simulation 
yields nothing new and gives always the same results.  To change that and obtain always new stochastic 
simulations you need disable the resetting of the random number generator before every run.  Choose menu 
command “Simulation → Perturbations…” and uncheck “Reset random number generator before every run”.  
Run now many simulations.  What do you see? Perhaps compare that with simulations where the “Probability of 
perturbation during an integration step” is smaller, e.g. 0.25.  Clear the graph by ⌘^B as you prefer.  You should 
now have a good idea about the basic features of the learning program.  Enjoy! 
 
 
4.2 Menu Commands 
 
Control 

Help...  (⌘^H): Displays a window with a brief description of the program's most important 
features. 

Reset all: Resets the program to its initial state.  Exactly the same conditions are created as 
immediately after the start of the program. 

Quit  (⌘^Q): Exit the program. 
 

Simulation 
Initial values...  (⌘^A): The initial values of the state variables (number of predators and prey) for 

the currently selected model can be set with the help of an input form. 
End time...: Enter the end time for the simulation runs. 
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Perturbations...: The program "Stability" allows simulations to be carried out deterministically or 
stochastically, whereby in the case of stochastic simulation a normally distributed 
disturbance value is added or subtracted from the state vector (number of predators and prey). 
 

 
 
 The frequency and magnitude of the disturbances can be controlled via two parameters: 

 
The first parameter “Probability of perturbation during an integration step” represents the 
probability that an element of the state vector will be perturbed during an integration 
step. If it is set to zero, the simulation is carried out undisturbed, i.e. deterministically, 
with probability 1 all elements of the state vector are disturbed during each integration 
step. 
 

 The second parameter “Coefficient of variation of the perturbation (in %)” determines 
the coefficient of variation, i.e. the standard deviation of the change (disturbance) as a 
percentage of the current value of the altered state variable. A value of e.g. 10% means 
that the standard deviation of the random change amounts to 10% of the current value 
of the altered state variable.  In other words, 67% of all disturbances cause a deviation 
from the current value of the state variable in the range of ± 10% (as for a normally 
distributed random variable about 67% of all values fall into the interval "mean value 
± standard deviation"). 

 
Note, you can edit these two parameters also in the middle of a simulation. 
 

 By default the used pseudorandom number generator is reset at the beginning of each 
simulation to the same state it was at the launch of the learning program. This resetting causes 
all calculations to be carried out with identical pseudorandom numbers (allows for precise 
repetition of a stochastic simulation, which may be useful if you wish to merely simulate 
longer or with another integration method).  If you uncheck the option “Reset random 
number generator before every run” new pseudo-random numbers are generated during 
repeated simulations with the same parameters, producing a more realistic stochastic 
behavior.  
 
The random number generator uses the three shown seeds at the begin of every simulation. 
To fully reproduce the results of any stochastic simulation, you need to write out those three 
seeds at the end of the run of interest. Reentering those three seeds and checking the option 
“Reset random number generator before every run” allows you then to reproduce precisely 
any stochastic simulation run results.  This is particularly relevant when relaunching the 
learning program. Note, the pseudorandom number generator is always initialised with real-
time dependent values, i.e. it is “randomized” during the launch of the learning program. 
 
 

Start simulation (Run)  (⌘^R): Starts a simulation run with all current settings and parameters. 
The graph is continuously updated during the simulation. 

Stop simulation (Kill) 	 (⌘^K): Aborts or kills the currently running simulation. 
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Graph 
Representation parameters...: The following parameters can be edited: 
 Curves to be displayed (any combination):  
 Prey vs. Time, Predator vs. Time, State Space, Prey vs. Predator vs. Time. Check or uncheck 

any of the curves as needed. 
 Output Interval: Interval for graphical output in time units.  
 ATTENTION: Only a maximum of 250 points per curve per simulation run drawn can be 

saved. All points computed are always drawn, but points exceeding former limit will no 
longer be redrawn during the next automatic redrawing (e.g. after exiting the CS-editor). 

 Representation of predator and prey axis: 
    Linear or logarithmic scale. 
 NOTE: In the logarithmic representation, the axis scaling is done in units of the natural 

logarithm, i.e. an axis scaling of 10, for example, means that the value exp(10)=22'026.47 is 
listed here. 

Clear graph  (⌘^B): Clear all curves, i.e. make the current graph blank. 
Edit coordinates (CS-Editor)  (⌘^E): Enters the Coordinate System Editor (CS-editor) mode. 

This allows to change the position of the axes, their scales, and move the origin. In the CS-
editor mode you see little circles representing points that can be clicked and dragged with 
the mouse to a new position on the screen.  Releasing the mouse button sets that point to a 
new position. However, this is possible only within certain legal ranges. The circle 
disappears under the mouse when leaving the legal range. Keep the mouse pressed and search 
for the legal range. For scale changing stay close to the axis, for all other points stay within 
the borders of the graph. ATTENTION: In the CS-editor mode you can only edit display 
settings and issue no other commands. Find in the temporarily shown additional menu “CS-
Editor” the command “Terminate CS-editing” to exit the CS-editor. 

 
Models 

Model 1: Select simulation model 1.  All subsequent simulations are carried out with the selected 
model.  The selection of the currently valid model is indicated by a check mark next to the 
menu command. 

Model 2: Select simulation model 2.  Ditto. 
Model 3: Select simulation model 3.  Ditto. 
Reset Model: Resets the initial values of the selected model to the predefined default values, the 

same ones assigned at initial program start. No other settings or parameters are affected. 
 

Integration: 
Euler-Cauchy Method: This activates for the numerical integration the Euler-Cauchy integration 

method (Runge-Kutta of the first order).  All subsequent simulation is carried out using that 
method, which applies even when altered in the middle of an ongoing simulation run.  A 
check mark on the left shows the currently active integration method. 

Heun Method: Activates numerical integration method Heun (Runge-Kutta of the second order).  
Ditto. 

Runge-Kutta 4th Order: Activates numerical integration Runge-Kutta fourth-order with a fixed step 
length.  Ditto. 

Discrete time: Activates numerical solving of discrete time models (automatically selected when 
selecting model 3). It cannot be changed by the user as this depends on the type of model to 
be simulated.  It merely serves to notify the user. 

Step length...: Enter the size of the integration step in time units as used for all subsequent numerical 
integration. It can be changed in the middle of a simulation run. 

 
CS-Editor (temporary menu): 

Terminate CS-editing  (⌘^T): This menu command appears only while editing the coordinate 
system. This menu command is the only way to exit the CS-editor mode. ATTENTION: To 
enter the CS-editor mode use command “Edit coordinates (CS-Editor)  (⌘^E)” under 
menu “Graph”. 
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Print (no menu command): 
On legacy Mac systems press ⌘^Shift^3 (all at once):2 Creates a file named "Screen #" (# means a 

single digit). This file can be printed with a drawing program (e.g. MacDraw or SuperPaint®) 
on a matrix or laser printer or inserted into a documentation. Such a functionality may not be 
available on modern Mac systems when running the learning program Stability in an 
emulator. Use then the host computer’s screen capturing functionality to the same end. 

  

 
2 This option is only available on black-and-white screens, or on color screens set to black-and-white mode (set 
the number of screen colors to 2 in the control device Monitors in the Desk Control panel). 
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5. Exercise 

 
 
a) Familiarize yourself with following terms: equilibrium position or equilibrium point, stability, 

stable according to Lyapunov, asymptotically stable, neutrally stable or marginally stable, and 
unstable.   

 
 
 
b) There are three real systems, as discussed in section 2.2: 

 
  System A - Winter moth in Nova Scotia  

 System B – Ciliate predator-prey laboratory system  
 System C - Biological control of whitefly by parasitoids  
 
In addition, the following three mathematical model systems are given:   

 
Model X 
 
 dx1/dt = a x1(t) - b x1(t) x2(t) 
 dx2/dt = c x1(t) x2(t) - d x2(t) 
 
 
Model Y 
 
 x1(k+1) = x1(k) r e-a x2(k) 

 x2(k+1) = x1(k) r (1-e-a x2(k)) 
where r = 2.0;  a = 0.68 

 
 
Model Z 
 
 dx1(t)/dt = a x1(t) - b x1(t)2 - c x1(t) x2(t) 
 dx2(t)/dt = d x1(t) x2(t) - e x2(t) 
 

 Finally, the "Stability" learning program contains three different simulation models, each 
corresponds to one of the above listed systems and mathematical models, respectively: 

 
Simulation Model 1 
Simulation Model 2 
Simulation Model 3 

 
 The goal of this exercise step is to assign to each system (A, B, C) the corresponding 

mathematical model (X, Y, Z) as well as the corresponding simulation models (1, 2, 3).  To 
accomplish this, use the "Stability" learning program. 

 
 
 
c) Determine the equilibrium points of the three mathematical models X, Y and Z.  Can you make 

statements about their stability properties?  (Note: Try to follow the approach as described for 
the example in section 2.1). 
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ANNEX I  (Worksheet): 
 
It may help to write your findings into the following table: 
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ANNEX II  (Solutions): 
 
 
Exercise a):  
 
The real systems A, B and C, their temporal behaviour and the stability properties of the equilibrium positions are 
roughly described in Chapter 2 «Theory» under Section 2.2 «Ecological Examples».  The student should therefore 
be encouraged to read that section carefully.  She should then be able to compile the relevant information on the 
summary result sheet (Annex I).  The result could be similar to this:   
 
System A (winter moth O. brumata, Fig. 3): Fluctuations with initially large amplitude (transient behavior) 

that subside and seem to converge towards a point-like equilibrium position.  Seems asymptotically 
stable and dynamics resemble a spiral sink. 

 
 It is known from the literature that the pest density has remained relatively constant at a low population level for at 

least two decades, indicating a new steady state.  In particular, the parasitoid C. albicans  is held responsible for 
this fact.  However, recent works (Myers, 1986) have cast some doubt on this interpretation.   

 
System B (ciliates in the laboratory: prey P. aurelia, predator D. nasutum, Fig. 4): fluctuations with constant 

amplitude, periodic population cycles (almost closed trajectories).  Dynamics similar to limit cycles. At 
least Lyapunov stable, but then neutral stability cannot be excluded, the unrealistic the latter may be.    

 
System C (white fly T. vaporariorum and Calcid E. formosa (Hym., Calcididae), Fig. 5): Fluctuations with 

increasing amplitude.  Unstable and leading sooner or later to the extinction of the species, which may 
be advantageous in the case of pest control. 

 
 
 
Exercise b): 
 
Following describes possible observations and results when conducting simulation experiments using the learning 
program “Stability”: 
 

 
 
Fig. 7: Typical working screen of the stability learning program.  The simulation with the model 1 is 
shown (only default values were used).  The prey density (B), the predator density (R) vs. the time (t) as well 
as a state space representation (R vs B) are represented.  With the coordinate system editor, the display 
(see figures below) or the scaling of the respective axes can be changed as desired. 
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The simulation models were built using the three mathematical models X, Y and Z.  The differential equation 
systems are solved as initial value problems by numerical integration with either a simple one-step method (Euler-
Cauchy), a Heun (Runge-Kutta 2nd order), or a Runge-Kutta method 4th order (fixed step length).   
 
To investigate stability properties it is advantageous to pay particular attention to the state-space representations 
and to construct phase portraits (see Fig. 8).  
 
 
On the behavior of the three simulation models: 
 
Simulation Model 1: All trajectories (e.g. generated by changing the initial values) lead to an equilibrium 

position.  Damped oscillations result.  Spiral sink.  Model Z, (a>be/d) (Fig. 8 - Lotka-Volterra 
asymptotically stable with self-inhibition of the prey (Term -bx1(t)2) in dx1/dt equation). 

 
Simulation Model 2: Periodic, undamped oscillations result, i.e. limit cycles enclosing the stationary solution 

in their middle.  Changing initial values is likely to produce another more or less closed trajectory.  
Model X (Fig. 8 - Lotka-Volterra neutrally stable).   

 
Note, closed trajectories are computed only when using a higher-order integration method such as the 
method Heun and the step size is sufficiently small.  For Model 2 the default method is Heun and the 
default step length 0.05.  This combination gives acceptable results.  Experimenting with other 
combinations, e.g. the here unsuitable integration method Euler (combined with the default step length), 
shows trajectories that are no longer closed.  The simulation model 2 starts to deviate strongly from the 
underlying mathematical model X.  The behavior of the simulation model starts to resemble the 
behavior of the mathematical model Z.  Thus, the simulated stability properties can be easily 
misinterpreted.  Note, the underlying mathematical model X is not unstable, but only neutrally stable 
(cf. next section). The latter makes it of course sensitive to all perturbations, including numerical errors. 
An important lesson to be learned here is that simulation models may easily deviate from the underlying 
mathematical model and need to be carefully investigated before jumping to conclusions. This is critical 
in particular when simulation is the prevalent means of study, e.g. due to the difficulty of a mathematical 
analysis, which may not always be as straightforward as this is the case for the three mathematical 
models presented here. In the case of continuous time systems the robustness of simulation results need 
to be at least tested empirically, e.g. by simply changing the numerical integration method. Simulation 
software, that does not allow for that, including programmed models with a fixed built in solving 
algorithm, should therefore be avoided. If not possible, then results have at least to be tested for their 
robustness otherwise with utmost care. 

 
Simulation Model 3: The default initial values are close to the equilibrium point.  As a result of the instability 

of this solution, the trajectories run away from it very quickly.  The behavior of this system is obviously 
unstable and corresponds to Model Y, Nicholson-Bailey model for host-parasitoid relationship.  Note, 
with the reproduction parameter r = 2 and as the area of discovery a=0.68, the non-trivial fixed point is 
[1.019334, 1.019334].  With initial values precisely set to that value, the trajectories form the expected 
straight line.  However, already a small deviation, e.g. with the initial values [1.019, 1.019], the 
oscillations start to show an increasing amplitude already after about 25 time steps.3 This makes the 
instability of this non-trivial equilibrium point very obvious. 

 
Remark: In nature ecological systems are subject to frequent perturbations, a situation in which the stability 
properties matter greatly.  Therefore a general lesson is to be learned by the student of ecology: The validity of 
an ecological model must not be based only on considerations of temporal behavior, but must also consider 
the stability properties, notably those revealed while be exposed to frequent perturbations. This insight can 
be illustrated by means of the learning program easily with following two observations:  

 First observation: A stochastic simulation with simulation model 1 shows almost periodic cycles even 
with only small perturbations (4%) (Fig. 9). Merely due to stochastic perturbations pseudo-regular cycles 
resembling somewhat limit cycles may arise, despite the fact that the system has just an asymptotically 
stable fixed point.  The impression that the system behavior tends towards a periodicity, that does 
actually not exist, may mislead the researcher unless the stability properties of the system are carefully 

 
3 Note, the learning program contains a bug and fails to properly label the time axis. Shown values are too large 
and need to be divided by a factor of 2.62 to get a correct label value for the current scaling of the time axis. 
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studied.   
 

 
 
Fig. 8: State-space representation of the trajectories of two predator prey models.  This graph has been 
created with the help of the stability learning program.  Simulation model 1 generated the trajectory 
forming a spiral that leads to the stationary solution in the centre. Simulation model 2 generated the large 
egg-like, closed trajectory (All calculations were performed with the default settings, i.e. default initial values, 
integration method, integration step.  Only the view was changed to focus on the state space by using the coordinate 
system editor.). 

 

 
 
Fig. 9: Prey (curves a,c) and predator (b,d) population curves vs. time, once without (a,b) and once with 
(c,d) perturbations.  This graph has been created with the help of the learning program “Stability”.  The 
simulation model 1 (Lotka-Volterra model Z with self-inhibition of the prey) has an asymptotically stable 
stationary solution showing damped oscillations. Without perturbations (curves a and b) we obtain a 
deterministic simulation results, with perturbations a stochastic simulation.  (The perturbations occurred at 
each integration step with probability p=1.0 and with a magnitude of 4.0% (coefficient of variation) by which the 
current values of the state variables were altered. All other settings were kept at default values. Only the view was 
changed to focus on the population changes over time by using the coordinate system editor.)   
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Second observation: A deterministic simulation with simulation model 2 gives the impression of regular 
predictable cycles (Fig. 10). Only exposing that simulation model to perturbations shows how little such 
model behavior has in common with the regular cycles one can observe in several population systems 
in nature where perturbations are prevalent. Simulations with a miniscule perturbation probability of 
0.001 but a change of 30% (coefficient of variation) show how single small perturbations cause the 
system to start cycling in a different manner forever until the next rare perturbation occurs (Fig. 11). 

 
 

 
 
Fig. 10: Behavior of simulation model 2 with default settings. Regular limit cycles result. 

 

 
 
Fig. 11: Behavior of simulation model 2 exposed to a rare perturbation (probability of occurrence p=0.001) 
with a coefficient of variation of 30%. That perturbation reduces both populations to some small random 
extent. It takes place shortly after the begin of the 2nd cycle for the predator (vertical red arrow) and in the 
middle of the build-up of the 2nd cycle for the prey (slanted red arrow). At this point the model dynamics 
change drastically to another cycle with a larger amplitude and bigger cycle length, despite the small 
change in population sizes. The new cycle would occur forever until perturbed again (note, no other 
perturbation occurred in the run shown). The precise simulation results shown here can be reproduced by 
setting the three seeds of the random number generator to 26280, 25480, and 7617 (output interval = 0.1).  
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In general holds, without studying the stability properties of a system, modellers must not jump to conclusions with 
respect to model acceptance based merely on a fit of observational data to particular simulated trajectories. An 
example of such practice is the regular, nevertheless obviously incorrect mentioning of the neutrally stable Lotka-
Volterra model (simulation Model 2) in the context of some cyclic population dynamics illustrate impressively the 
relevance of this argument. Given its neutral stability and the fact that population cycles such as the famous hare 
lynx cycles, are in reality permanently disturbed, yet do not show amplitude changes at each perturbation. The latter 
should be the case if the model would correctly describe the famous hare-lynx cycles. 
 
 
Exercise c): 
 
The equilibrium positions of the three systems all comprise the trivial solution x°', i.e. the origin [0,0], and the non-
trivial equilibrium position x°". Following the first method of Lyapunov (Chapter 2 «Theory», Section 2.1 «On 
Stability and Stability analysis») we obtain for each mathematical model following solutions: 
 
 
Model X 

 
dx1/dt = a x1(t) – b x1(t) x2(t) = 0 Þ x2 = a/b 
dx2/dt = c x1(t) x2(t) - d x2(t) = 0  Þ x1 = d/c 
 
The trivial, first stationary solution lies in the origin x°' = [0,0].  It makes ecological sense, since any 
growth or decline of a population requires the presence of some individuals (population density > 0). In 
absence of any, nothing happens and the system is in an equilibrium. The non-trivial, second stationary 
solution x°" is 

 
 

 x°" = [ d/c , a/b ] (similar to Fig. 2, but dx1/dt corresponds to a horizontal straight line) 

 
 
The Jacobimatrix 
 
  æ ∂f1/∂ x1 ∂f1/∂ x2 ö æ a – b x2(t) -b x1(t) ö 
 J = ç   ÷    = ç   ÷ 
  è ∂f2/∂ x1 ∂f2/∂ x2 ø è c x2(t)  c x1(t) - d ø 
 
at the position [0,0] (trivial, stationary solution) 
 
  æ a 0 ö 
 J' = ç   ÷ 
  è 0 - d ø 
 
and at the point x°" (non-trivial stationary solution) 
 
  æ 0 - bd/c ö 
 J" = ç   ÷ 
  è ca/b 0 ø 
 
The characteristic polynomial derived from matrix J' 
 
  ê a-l 0 ê 
 det[J' - lI]  =   ê   ê  =  (a - l)(- d - l)  = 0 
  ê 0 - d - l ê 
 
 l1  =  a  l2  =  - d 
 
Ecologically meaningful are only populations with an intrinsic growth rate a>0. Similarly meaningful is 
only d>0 or the predator would not be a predator.  For a>0, we have always the positive eigenvalue l1 > 
0.  One positive eigenvalue suffices to make the system unstable. Therefore, the trivial, stationary 
solution [0,0] is unstable.   
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For the second, non-trivial stationary solution x°" given matrix J" we obtain the characteristic polynomial 
 
  ê -l - bd/c ê 
 det[J" - lI]  = ê   ê = (-l)(-l) + d a = 0 
  ê ca/b -l ê 
 
or the quadratic equation 
 
 l2  +  a d = 0 
 l1/2  =  ± √−	𝑎𝑑 
 
A predator-prey relationship requires that a>0 and d>0, i.e. the discriminant is always negative.  
Therefore, these ecological assumptions result always in conjugate, complex eigenvalues l1/2  =  ±√𝑎𝑑 i 
with a non-existent real part.  Therefore the non-trivial stationary solution x°" is neutrally stable and 
due the imaginary part of the eigenvalues we have to expect some oscillations.  Note that while this 
solution is not asymptotically stable, it is still Lyapunov stable.   
 
Since the trivial solution [0,0] is unstable and the non-rivial solution x°" is neutrally stable, a system 
behavior with periodic, undamped – but not “exploding” – oscillations is to be expected, i.e. neutrally 
stable limit cycles (closed trajectories) that enclose the stationary solution x°". 

 
 
 

Model Y 
 
x1(k+1) = x1(k) r e-a x2(k)  Þ x2 = ln r / a  

x2(k+1) = x1(k) r (1-e-a x2(k))  Þ x1 = ln r / [a(r-1)] 4 
 

 
The trivial, first stationary solution lies in the origin x°' = [0,0].  The non-trivial, second stationary 
solution x°" is 

 
 x°" = [ ln r / {a(r-1)} , ln r /a ] 

 
 
The Jacobimatrix 
 
  æ ∂f1/∂x1 ∂f1/∂x2 ö æ r e-a x2(k) - x1(k) a r e-a x2(k) ö 
 J = ç   ÷    = ç   ÷ 
  è ∂f2/∂x1 ∂f2/∂x2 ø è r (1-e-a x2(k)) x1(k) a r e-a x2(k) ø 
 
at the position [0,0] (trivial, stationary solution) 
 
  æ r 0 ö 
 J' = ç   ÷ 
  è 0 0 ø 
 
and at the point x°" (non-trivial stationary solution) 
 
  æ 1 -ln r/(r-1) ö 
 J" = ç   ÷ 
  è r - 1 ln r/(r-1) ø 
 
The characteristic polynomial according to matrix J' 
 
  ê r-l 0 ê 
 det[J' - lI]  =   ê   ê  =  (r - l)(- l)  = 0 
  ê 0 -l ê 

 
4 To obtain this value substitute in the 2nd difference equation for x2(k) the before found equilibrium value ln r/a 
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 l1  =  r  l2  =  0 

 
As this is a discrete time system, ecologically meaningful are only host and parasitoid populations with 
a reproductive rate of r>1.  For r>1, there is always an eigenvalue with the absolute value of | l | > 1.  
Therefore, the trivial, stationary solution [0,0] is unstable.   
 
For the second, non-trivial stationary solution given matrix J" we obtain the characteristic polynomial 

 
  ê 1-l -ln r/(r-1) ê 
 det[J" - lI]  = ê   ê =  (1 - l)(ln r/(r-1) - l) + ln r = 0 
  ê r-1 ln r/(r-1)-l ê 

 
or the quadratic equation 

 l2  - (1 + ln r/(r-1))l + r ln r/(r-1) = 0 

 l1/2  = 1/2 [1 + ln r/(r-1)] ± #1/4[1	 + 	𝑙𝑛	𝑟/(𝑟 − 1)]2	 − 	𝑟	𝑙𝑛	𝑟/(𝑟 − 1) 
 
For r > 1 – the only ecologically meaningful assumption – the discriminant becomes negative, the 
eigenvalues become complex and oscillations arise. The discriminant becomes negative for following 
reasons: The first term of the Taylor series expansion of exp(r-1) is 1 + r – 1 = r, which means that r < 
exp(r-1) or ln(r) < (r-1) so that the term ln(r)/(r-1) < 1. Adding 1 to a term smaller than 1 gives a sum 
smaller than 2, squared a value smaller than 4 resulting in the first term of the discriminant 1/4[1 + ln r/(r-
1)]2 being always < 1. Similarly, the first term of the Taylor series expansion of ln(r) is (r-1)/r, which 
means that the absolute value of the second term of the discriminant r ln(r)/(r-1) is always > 1. Thus the 
sum of the two terms of the discriminant is always < 0.  
 
As this is a discrete time system, we need the absolute value of the resulting conjugate complex 
eigenvalues l1/2. It can be derived as this 
 
 l1/2  = 1/2 [1 + ln r/(r-1)] ± i #−{1/4[1	 + 	𝑙𝑛	𝑟/(𝑟 − 1)]2	 − 	𝑟	𝑙𝑛	𝑟/(𝑟 − 1)} 
 l1/2  = 1/2 [1 + ln r/(r-1)] ± i #−1/4[1	 + 	𝑙𝑛	𝑟/(𝑟 − 1)]2	 + 	𝑟	𝑙𝑛	𝑟/(𝑟 − 1) 

 |l1/2| = ±)	{1/2[1 + 𝑙𝑛	𝑟/(𝑟– 1)]}2		 +	{	#–1/4[1	 + 	𝑙𝑛	𝑟/(𝑟– 1)]2 + 	𝑟	𝑙𝑛	𝑟/(𝑟– 1)		}2 
 |l1/2| = |	√𝑟	𝑙𝑛	𝑟/(𝑟 − 1) | 
 
This means we get for r>1 always | l1/2 | > 1.  Therefore, the non-trivial, stationary solution x°" is 
unstable.  Remember, the absolute value of a complex number is defined as the length of the vector from 
the origin to the point given by the real and imaginary part of the number in the complex plane. Above 
derivation then simply used the Pythagoras theorem to get the absolute value of the complex eigenvalues. 
In general holds for any discrete time system, asymptotic stability results only if the vectors associated 
with complex eigenvalues lie fully within the unit circle and any non-complex eigenvalues are negative. If 
any vector ends outside the unit circle or any non-complex eigenvalue is positive, instability results. 
 
Since both existing stationary solutions are unstable, the entire system also exhibits unstable behavior.  
The trajectories all lead away from both stationary solutions x°' as well as x°". 

 
 
 

Model Z 
 
dx1(t)/dt = a x1(t) – b x1(t)2 - c x1(t) x2(t) = 0  Þ x2 = a/c - b/c x1 
dx2(t)/dt = d x1(t) x2(t) - e x2(t) = 0  Þ x1 = e/d 

 
The trivial first stationary solution is x°' = [0,0] and the non-trivial second stationary 
solution is x°" 

 
 x°" = [ e/d , a/c - be/cd ] (see also Fig. 2) 
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The Jacobimatrix 
 
  æ ∂f1/∂x1 ∂f1/∂x2 ö æ a – 2b x1(t) - c x2(t) - c x1(t) ö 
 J = ç   ÷    = ç   ÷ 
  è ∂f2/∂x1 ∂f2/∂x2 ø è dx2(t) dx1(t) - e ø 
 
at the position [0,0] (trivial, stationary solution) 
 
  æ a 0 ö 
 J' = ç   ÷ 
  è 0 -e ø 
 
and at the point x°" (non-trivial stationary solution) 
 
  æ -be/d - ce/d ö 
 J" = ç   ÷ 
  è (ad - be)/c 0 ø 
 
The characteristic polynomial given matrix J' 
 
  ê a-l 0 ê 
 det[J' - lI] = ê   ê  =  (a - l)(-e - l)  = 0 
  ê 0 -e-l ê 

 
 l1  =  a  l2  =  -e 

 
Ecologically meaningful are only populations with an intrinsic growth rate >0.  For a>0, there is always 
at least one positive eigenvalue l1 > 0.  Therefore, the trivial, stationary solution [0,0] is unstable.   
 
For the second, non-trivial stationary solution x°" given matrix J" we obtain the characteristic 
polynomial 

 
  ê -be/d - l - ce/d ê 
 det[J" - lI] = ê   ê  =  (-be/d - l)(-l) + e(a-be/d) = 0 
  ê (ad - be)/c -l ê 

 
or the quadratic equation 

 l2   + be/dl + e(a - be/d) = 0 

 l1/2  = - be/2d ± #(𝑏𝑒/2𝑑)2
	− 	𝑒(𝑎 − 𝑏𝑒/𝑑) 

 
A predator-prey relationship requires that all parameters a>0, b>0, c>0, d>0, and e>0.  Under these 
conditions, the values of the parameters can still form different relationships, which need to be 
distinguished. Following three cases a, b, and g, matter with respect to the stability properties of x°".  
In case a we have a=be/d, i.e. the second term of the discriminant disappears and the value of the root 
becomes exactly be/2d.  This results in following eigenvalues 

 
 l1  =  0      a = be/d (a)  l2  =  -be/d 

 
l1 = 0 indicates neutral stability of x°" and closed trajectories surrounding the stationary solution x°" 
are to be expected.   
 
For the other two cases, the value of the root term becomes either greater or less than be/2d.   
 
In case (b) holds a<be/d, which can be ecologically interpretated that the carrying capacity of the 
ecosystem (K = a/b) for the prey is lower than the ratio between the death and growth rate of the predator 
(e/d), i.e. K = a/b < e/d.  In this case the second, term of the discriminant becomes positive and causes 
the amount of the root value to become larger than be/2d.  This results in one real, positive eigenvalue, 
so for this case the solution x°" becomes unstable 
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 #(𝑏𝑒/2𝑑)2	− 	𝑒(𝑎 − 𝑏𝑒/𝑑) > be/2d a < be/d (b) 

 l1  =  – be/2d  +#(𝑏𝑒/2𝑑)2	− 	𝑒(𝑎 − 𝑏𝑒/𝑑)   >  0 

 l2  =  – be/2d  –#(𝑏𝑒/2𝑑)2
	− 	𝑒(𝑎 − 𝑏𝑒/𝑑)   <  0 

 
In the third case (g) holds a > be/d, which can be ecologically interpretated that the carrying capacity of 
the ecosystem (K = a/b) for the prey is higher than the ratio between the death and growth rate of the 
predator (e/d), i.e. K = a/b > e/d.  In this case the second term of the discriminant becomes negative and 
causes the root value to become always smaller than be/2d.  This means that only eigenvalues with 
negative real parts can result 
 

 #(𝑏𝑒/2𝑑)2	− 	𝑒(𝑎 − 𝑏𝑒/𝑑) < be/2d a > be/d (g) 

 l1/2  =  – be/2d  ±#(𝑏𝑒/2𝑑)2
	− 	𝑒(𝑎 − 𝑏𝑒/𝑑)   <  0 

 
In case (g), the solution x°" is therefore asymptotically stable.  Due to the imaginary parts oscillations 
result. Thus a system behavior with damped oscillations around an asymptotically stable equilibrium 
x°", i.e. a spiral sink, is to be expected.   
 
The non-trivial, stationary solution x°" is thus neutrally stable in the case a=be/d (a), unstable in the case 
a<be/d (b), and asymptotically stable in the case a>be/d (g).  We can expect that evolution would select 
against case (b) and that case (a) would be rare and evolution would also select against it as the slightest 
deviation towards case (b) results in the same fate as all cases (b).  It can therefore be expected that 
natural variation would select a safety margin so that case (g) is unlikely to become case (a), let alone 
(b). This means we can expect in nature to find mostly case (g) for the model Z.  Since the trivial solution 
[0,0] is unstable and the non-trivial solution x°" is asymptotically stable, such a parameter constellation 
always results in an overall system behavior resembling damped oscillations where the trajectories lead 
back towards a spiral sink, i.e. the stationary solution, in the event of ongoing disturbances or deviating 
initial conditions, e.g. resulting from human interventions.   
 

 
 
Summary of solutions including model assignments: 
 
 

Simu-
lation 
Model 

Mathe- 
matical 
Model 

Real 
System 

Model Name Equilibrium points  
(fixed points, steady states) 
trivial [0,0] non-trivial 

1 Z A Lotka-Volterra with self-
inhibition of prey 

unstable 
l1 > 0, l2 < 0 

asymptotically stable 
ℛ𝑒(l1/2) < 0 5 

2 X B Lotka-Volterra without 
self-inhibition of prey 

unstable 
l1 > 0, l2 < 0 

neutrally stable 
ℛ𝑒(l1/2) = 0 

3 Y C Nicholson-Bailey host 
parasitoid 

unstable 
l1 > 0, l2 = 0 

unstable 
|l1/2| > 1 
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Teaching Experiences 
 
The courseware «Stability» was used for the first time in the summer semester of 1986 and since then in the winter 
semester at the ETHZ as part of the lecture "Systems Analysis" by A. Fischlin.  This lecture counted for the final 
diploma at Department VII of Agriculture (Systems Analysis: Topic Agricultural Economics (5th Semester); 
Animal Production (7th Semester) and Plant Production (7th Semester) plus Department X of Natural Sciences 
(Ecological Systems Analysis: Topic Biology (5th Semester); Ecology and Systematics (5th Semester).  Since the 
winter semester 1988/89, the lecture has been a compulsory course at Department XB1 (Environmental Natural 
Sciences) in the 3rd semester forming part of the exam for the 2nd intermediate diploma (2. Vordiplom). 
 
The students worked with the program during two supervised practice sessions and then solved the task in further 
independent work.  The students each wrote a small report in which they describe their finding and handed it in 
the following week.  The tasks were satisfactorily solved by the majority. 
 
Later the courseware «Stability» was also used for many years in the course “Systems Ecology” by A. Fischlin and 
H. Lischke as offered for the master degree at the department of Environmental Systems Science of ETH Zurich. 
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