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Calculating temperature dependence over long time periods:
Derivation of methods

Heike Lischke *, Thomas J. Loffler, Andreas Fischlin
Systems Ecology, Institute of Terrestrial Ecology, ETH Ziirich

Abstract

Rates of ecological processes are usually influenced by temperature. For simplicity and ef-

ficiency of ecosystem models it is often necessary to summarise information about temperature
dependence from short, e.g. hourly, time intervals over longer, e.g. monthly, time periods, i.e. to
calculate long term expected values of dependence functions. This aim can seldom be achieved by
applying the temperature function to the mean temperature, because temperature dependencies
are in many cases nonlinear. Therefore, we derived newly seven methods for such a temporal
aggregation of temperature dependence. The methods determine the expected value interpreting
either hourly temperature, daily temperature mean, or daily temperature mean and amplitude as
random variables. The dependence function hereby is approximated by a piecewise linear function,
the daily temperature course by a triangle and the density function of the normal distribution by
a parabola.
The resulting methods cover a range of temperature input data resolutions: monthly mean or
standard deviation or both of either hourly temperatures, daily temperature extrema, daily tem-
perature means and amplitudes, or only daily temperature means. The methods can be applied
to all types of dependence functions, in particular to nonlinear ones.
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1 Introduction

Many biologically or ecologically relevant processes are temperature dependent. This holds for de-
velopment processes of poikilothermic organisms, as e.g. the maturing of insects or the growth of
plants. Also processes used to synchronise an organism’s life-cycle to seasonally changing environ-
mental conditions, such as insect diapause, seed vernalisation or timing of tree bud rest break are
at least partly regulated by temperature. The functions dp(T") by which these processes depend on
temperature T are usually nonlinear. Cummulative effects of temperature on such biological processes
can be measured by means of the integral

M(t,to) = /3 dp(T(7))dr (1.0.1)

over a time interval (¢p,t). This integral is often referred to as “physiological time”, “day-degree-sum”,
or “heat-unit-sum”.

Temperature dependence plays also a major role in many ecological simulation models, ranging from
pest prognosis models (e.g. BUGOFF2 (BLAGO AND DICKLER N.D.) and APFWICK (LISCHKE AND
Braco 1990, LiscHKE 1992), over crop phenology models (e.g. BIOTIME, (KIRSTA AND TARABRIN
1994)), to models examining the sensitivity of ecosystems to a potential climatic change, as e.g. the
forest succession models FORSKA (PRENTICE ET AL. 1993), ForCLiM (BUGMANN 1994, FISCHLIN
ET AL. 1994), and DisCForM (LI1SCHKE ET AL. 1995), where physiological time determines e.g.
the growth and thus the competition of individual trees.

An imprecise formulation of the temperature dependence function can seriously influence the outcome
of such models, depending on the model sensitivity to the regarded temperature dependence function.
For example, an about 10% error of the temperature dependence of codling moth developement leads
to an error of about 7 days in the simulations with a pest prognosis model (LISCHKE 1992) in Central
Europe. Depending on the application, such an error might be untolerable.

The most exact approach is to calculate M(t,#p) by summing the actual values of the dependence
function using temperature data in high temporal resolution, which reflect the diel and even higher
frequency temperature fluctuations.

However, due to practical constraints as the lack of appropriate input data, long computation time,
or the desire to keep a model as simple as possible, in many models a larger time step is chosen and
temperature dependence is calculated by applying the temperature dependence function either to the
mean temperatures, (e.g. monthly temperature means in FORCLIM) or to an interpolated tempera-
ture course (e.g. in FORSKA or theBIOTIME-model).

Yet, monthly or yearly temperature means or interpolations between means do not contain all in-
formation about the temperature variability in the regarded period, particularly not about the diel
variation. If the dependence function is nonlinear, which is the case for many processes, such a simple
approach can lead to a loss of precision in the model outcome.

To overcome this conflict between required precision and manageability, methods are necessary to
calculate physiological time as precisely as needed using as much information of the available input
data as possible . The methods should work on larger time scales, at least one day, preferably one
month, year, or decade. i.e. aggregate the temperature dependence function from the small time scale
of the input data to a larger time scale. This means, the methods summarise the information about
temperature dependence from short time intervals over longer periods.



Several approaches exist to deal with this problem. (1) A possibility is to approximate the non-
linear dependence function using a linear one with a lower and an upper threshold, and to sum the
daily values of this approximation as in BUGOFF2 or by calculating its expected value (ACEITUNO
1979). However, the use of such a linearly and monotonically increasing approximation instead of
the original dependence function or a better matching nonlinear approximation as e.g. the sigmoid
function proposed in (STINNER ET AL. 1974) or the biophysical models presented by Sharpe and
DeMichele (1977) and Wagner et al. (1984) can lead to considerable loss of precision (BLAGO AND
DICKLER N.D.).

(2) Other approaches apply the dependence function to an estimated daily temperature course, which
has been approximated by models such as the triangulation method of Lindsey and Newman (1956),
the single sine method by Baskervile and Emin (1969), the sine-sine-method of (ALLEN 1976), or the
sine-exponential method of Parton and Logan (1981). However, tests of some of these methods by
Worner (1988) did not show a satisfactory precision for all tested sites. Moreover, if it is nonlinear,
the temperature dependence function can not be evaluated in one step for each day but has to be
applied to hourly values of the approximated temperature course, so that no computing time is saved
compared to the use of the original hourly input data. The computational costs for solving the integral
M(t,tp) over one day can only be reduced for uncomplicated, e.g. linear dependence functions as in
Bucorr2.

(3) Empirical correction functions of the temperature dependence as used by Allen (1976) or Bug-
mann (1994) on the other hand confine the model application to the regions where those functions
have been estimated.

Summarised, the above listed approaches are either restricted to a special, often linear type of depen-
dence function, to a certain length of the aggregation period, or to a certain kind of input data, even
if more detailed information about the temperature course in the aggregation interval is available. Or
they have to be combined with empirical correction terms to yield satisfying results.

The aim of this paper is to derive several approaches for temperature dependence aggregation

e which are applicable for general, i.e. nonlinear temperature dependence functions;

e for temperature input data of different resolutions;

e which are able to use as much information as possible in the available temperature input data,
e and to work with arbitrarily large time steps, ranging from days to decades;

e and which are generally formulated and therefore extendible to other fields of dependence func-
tions;

2 Derivation of Methods

2.1 Principles

In this section the approximation principles of the methods are described. The same general idea is
underlying all described approaches. If with a certain temperature x, pr qc: () is the relative frequency
in the aggregation interval (fo, t), e.g. one month, then the physiological time M (¢,%g) (cf. (1.0.1)) can
be expressed by the integral over the dependence function of = multiplied with its absolute frequency
by

M(tto) o= /t@(T(r))dr

= (t - tO) /_m pT,act(I)@(I)d:B
(t — to)Edep(T)].



Thereby E[dp(T)] is the expected value of the temperature dependence function dp(T). The problem
is to find a reliable estimator for E[dp(T)] in (to,t), given the mean value and standard deviation or
only the mean value of temperature or related variables as e.g. temperature extrema.

In the following eight methods for the estimation of E[dgp(T)] are derived. The approximations used
for the estimation and the exact algorithms are given in sections 2.2 and 2.3 respectively. The symbols
are explained in tab. 5 in the appendix. For sake of simplicity we consider the aggregation from an
hourly to a monthly time interval, but the methods can also be applied for other aggregations from
all time intervals of less than one day to larger ones, e.g. one year or decade.

2.1.1 Methods using the hourly temperature as random variable

We describe two approaches, abbreviated as DA and EDH respectively, which regard the hourly
temperature as a normally distributed random variable with the density function pr(x).

In the widely used approach DA, the expected value is approximated by applying the dependence
function directly to the mean temperature value pp in the regarded period, i.e.

Eldep(T)] ~ dp(pr). (2.1.1)

In approach EDH the expected value E[dep(T')] of the hourly values of the temperature dependence is
calculated explicitly by

o—(@—pr)?/20%

T~ N(pr,or)= pr(z) = o (2.1.2)
Bldp(D)] = [ dptalpr()is (2.13)

2.1.2 Methods using daily temperature mean, amplitude, and extrema as random vari-
ables

If no hourly input data, but data about the daily temperature means, amplitudes, or extrema are

available, the following six methods EDHT1, ETHT2, EDM and DAT, EDDT1, EDDT2 can be used.

Methods approximating the statistical parameters of hourly temperatures (1) Approach
EDHT1 applies the same algorithm as EDH, but estimates the mean pr and standard deviation op
(cf. (2.3.2)) of the hourly temperatures from the means p7, ua and standard deviation of, oA of the
daily mean T and amplitude A.

(2) Approach EDHT?2 corresponds to EDHT1, with the difference of calculating the daily temperature
mean T and amplitude A from the daily extrema by T ~ T}, = w and A = Thaz — Tmin-
(3) In approach EDM the expected value is calculated explicitly as in EDH, but with the daily mean
temperature T" as random variable, which corresponds to the assumption that hourly and daily mean
temperatures have a similar variance.

o (W—n7)?/20%

T ~ N(pg,07) = pr(y) = T
oTV2m
Eldp(T)] = /_ dp(y)pr (v)dy. (2.1.4)

Methods approximating the daily temperature dependence function In a first step the
temperature course T'(¢) for each day is approximated by a function T'(¢, T, A) (cf. (2.2.2)) of the daily
average temperature T and daily temperature amplitude A. Then the daily integral DEP(T, A) of the

temperature dependence function dep(T") applied to this approximated temperature course ’f(t, T,A)
is evaluated (cf. (2.3.5) and (2.3.6)) by

DEP(T,A) = /D 1@ (T(T,T,A)) dr ~ /0 1ds-p(T('r))d'r (2.1.5)
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for each day normalised to the interval (0, 1) of the period (fp,%). In a second step the expected value

E[DEP(T,A)] of DEP(T, A) for all days in (¢p,t) is determined.

(1) Approach DAT approximates E[DEP(T, A)] by applying DEP to the average daily temperature

course, which is characterised by the average daily temperature mean ps and the average daily

temperature amplitude pa, i.e.
E[DEP(T, A)] ~ DEP (i, 1a). (2.1.6)

(2) In approach EDDT1 the expected value of DEP(T, A) is calculated, regarding daily temperature
mean T and amplitude A as independently normally distributed random variables with means pus
and pa, standard deviations o7 and oa, and density functions pg(y) and pa(z), which are defined
analogously to eq. (2.1.2). The expected value E[DEP(T, A)] is defined by

EWDEP(T,2)] = [ h / " DEP(y,2) pp(y) dy pa(z) d=. (2.17)

(3) Approach EDDT2 corresponds to EDDT1, except that the daily temperature mean T is calculated
by T ~ Tm — Tmin‘lQ'Tmu:z: .

2.2 Approximations

In this chapter the approximations underlying all derived methods are described. The integrals in

a) Approximation of temperature dependence function
dep(T)
1

o—

T T T _—
do dg dy

Temperature T Figure 1: Approximations used in by the aggre-

gation methods: a) Approximation of the tem-
perature dependence function by a piecewise lin-
ear function, defined by a set of grid points d;

b) Approximation of daily temperature course
Temperature T

Tmax

c) Approximation of distribution densities
Frequency

PP T and the corresponding values of the dependence

T A . function. b) Approximation of the daily temper-

Tomin -7 T ature course using a triangle between Trmin and
r . T day-ﬂ—me . Tmaz- The maximum is reached at time tmqz. €)

Approximation of the density function px(z) of
the normal distribution by the parabola px(zx),
X = T,A (px,ox are the mean and standard
deviation).

eqgs. (2.1.3), (2.1.4), and (2.1.7) are of the type fe_(z_a)zf(ﬂ:) and thus not analytically soluble for
all types of functions f. Therefore, we use the following approximations (cf. figs. la, 1b, and lc):

e The temperature dependence function dp(7') is approximated by a piecewise linear function

%(T) with the ng grid points d;.

diy1—d;

cE(TJz{ 0

dp(d;) + (T — dy) )=o) g T g, ,

¥

i=0,...,ng—1. (2.2.1)

else

In fig. 1a e.g. an approximation with four linear parts is shown.



e The daily temperature course is approximated by an asymmetric triangle T(t} with the same
minimum temperature at the beginning and end of the day (cf. fig. 1b) and a variable time
point t;,4, of the maximum temperature.

'm.m. T

l\3|I>

3 maz—T‘l'

) T - e ,0 <t < tmas
T-% +(1—t)1 — tmaz <t < 1

2’

(2.2.2)

e In eq. (2.1.7) the normal distribution density functions ps(y) and pa(z) are each approximated
by a polynomial p of second order which are set to 0 for values =,y < 0 (in fig. le: = < px —gox
and = > pux + gox, X = T,A). The parameter g determines the width and height of the
parabola. In fig. 1c the approximation for g = 2.3 is shown.

2
3 g\2 _ (y=px _
px(y) = { Fox ((2) ( QUXX) ), px —gox <y < px +gox (2.2.3)
0 else

¥

with X = T, A. With these approximations we get (piecewise) polynomials for all functions in the
integrals (2.1.3), (2.1.4), and (2.1.7). The so replaced integrals can be solved analytically with the
help of symbolic calculation software as e.g. MATHEMATICA or MAPLE. In the following we refer to
the aggregation methods using these approximations with a tilde.

2.3 Algorithms

In this section we derive in detail the algorithms, which are used to evaluate the new approaches
(EDH, EDM, EDHT1, EDHT2, DAT, EDDT1, and EDDT?2) the principles of which were presented
in section 2.1. .

The seven methods approximate the temperature dependence function dp(T') by dp(T') (cf. (2.2.1)).

Thus, this piecewise linear function %JJ(T) has to be defined suitably by the grid points d;,i =
0,...,nqg — 1. Then the expected value of &;}(T) can be treated as a sum of the expected values of
the different linear pieces, i.e. E[dp(T)] = ) Eldp;(T)]. In the following it is therefore sufficient
to explain the evaluation of E[cﬁkz{)11 (T)].

2.3.1 Approach EDH

For approach EDH we substitute in eq. (2.1.3) the temperature dependence function dp(T') with the

apprommatlon d;ug (T) (cf. (2.2.1)). In this way we get the approximated expected value E [dq)l (T)]
of each i"® part of the dependence function as

dip1 T e—(I—’JT)Z/z(T%— p
(I)————dzx
u, @a( ) O'T\/E

i | @(dm) @(di))e—w—wfﬂvé )
/d,. (d"“’(d“)*( A A Y

Eldyp,(T)]

diiq
/ (Bi + aﬂ)e—(ﬂ:—.ur) M dx
d;

with a; = d?p(d;:z:f(di) ! 5> Bi = 2572‘7 — a;d;, vy = 202 which can be solved e.g. with the help

of symbolic calculation software, because the function 3; + a;x is linear in z. The solution yields

Eldp,(T)] = aumm.)\/giw (Erf(dmi\/;w)_w(dfﬁ))_




0.5 a7y (e_(l-"-‘l"—di+l)2/')" _ e—(#T—di)Z/’Y ) (2_3_1)

2r—1 k—1
Kmaz T (—

with the errorfunction Erf(x), which can be expressed by the series ) "] DIERD stopping

after Kmar iterations.

2.3.2 Approaches EDM, EDHT1, and EDHT2

The approaches EDM, EDHT1, and EDHT?2 are all based on approach EDH (2.3.1) but differ in the
way they estimate the data T', pr, and or.

(1) For approach EDM in eq. (2.3.1) T, ur, and ot are replaced by T, puf, and of.

(2) In approach EDHT?2 in a first step the daily mean temperatures are approximated by T ~ T, =
LmintTmes for each day. Hence we can approximate pup ~ pp and op ~ o .

(3) Then in both approaches EDHT1 and EDHT2 we derive the mean pr and variance or of the
hourly temperatures from the mean pp and pa and the variance o and oa of the daily temperature
means and amplitudes.

The approximation of pr is easy, since pr = ps.

To obtain the approximation o7 of o we assume that the temperature course Tday(t) at a specific
day follows a triangle, analogously to the approximation in fig. 1b) and eq. (2.2.2). The triangle is
symmetric with maximum at noon and equal minima at the beginning and end of the day. Hence we
get

Faun(®) Taay — 2dev ¢23der 0 <t <05
d = _
a”' Taay — 2o + (1 — )88 05 <t <1

The variance o of this approximated temperature course T(t} during m days is given through the
mean quadratic distance of each temperature value to the mean temperature by

m 1, 5
72 = %Zl [ (Taas®) - pr)"

day=

2 m 05 [ Aday
T m Z/ Tiay — —pr +t 2044y | dt
mda?}=1 0 2 P e
« B
9 M 0.5
= Z/ o? + 208t + B2 dt
mday:l 0
1 ¢ 2 aP 52
- a2 (Y5
day=1
LS~ (7 : r Ny . ([ A 4A2
- m Z (Tday_‘uT) _Aday (Tday_“T)+%+(Tday_“T_ ;ay) Ada;l,-'"' lzay
day=1
LS (1 2 1§ P m 1 1 1
~ m Z (Taay — pr) - Z Aday (—Taay + Taay — pr + pr) +A7%,, (Z_§+§)
day=1 day=1 ~ }}r )
11 &
2 2
= ot m Z Aday
day=1
11 ) 5 ,
- gi?zﬂ_ﬁ; Z (Aday_QAdﬂyF‘&"'ﬁa +2Adayﬁa_;ﬂa)
day=1
s 11 & s 11 & \
= "TJFEE Z (Aday — p2a) +EE Z (2Adayaua_;ua)
day=1 day=1

-




1 2;_1,&
= o+ B A"’ Z( day) — Qﬂa
2 " oyt 1
2ua 1
112 Ha 12‘”*5
2

or + IQC’A + 12%5

1

This gives the result

~ 1
= or = \/E (02 +pa) + 0%, (2.3.2)

Then the algorithm EDH (2.3.1) is used with the obtained pr and or.

2.3.3 Approaches DAT, EDDT1, and EDDT2

For the following three methods first the daily value of the i*" part of the dependence function is
calculated. Then the expected value of this daily value is approximated.

Daily dependence function integral The approximated daily integral DEP(T,A) (2.1.5) over

the approximated dependence function part dgp;(T') (2.2.1) applied to the approximated temperature
course T'(t) (2.2.2) (illustrated by fig. 2) is given by

DEP; = / 1Ipﬁ ({i“'(r)) dr
_ /dep(d)-i—(T(T) )@(d;:i fp(d’?)d

v

Tina -
= dep(di) + (_ - % - dg‘) +ouT A dr+
Jix | B maz
T4 EI:
| dep(di) + (_ A dz‘) +ai(1 — T)Ldﬁr
iz . 2 B 1— tmam
%
= Bi(lia—Js, 1)+2t ( 31—J3,1)+
;81 (132 Jz 2)+ (]12 J32 ( ?,Q_J?,Q)) +

= )Bi(]i11_J§,1+]i12_Ji,2)J+
Is,
(1 - tmaz) (]E,I_J?,Il) — tmax (]E,Q_J?,Q) + 2 tmax (-|i,2_Ji‘.2)
2 tmaz(l - tmam)
Fus
= PBifs. + aildfa, (2.3.3)

O.’gA

-

with Jg,]_ = max([), ti,]_), ]i‘.l = mil'l(tg_'_]:]_, tma:l:): Ji‘.Q = max(tmu, tg_;,_]_,g), and ]i,? = miﬂ(t«j:Q, ].).

Fig. 2 shows that t;1, tiy1,1, ti2, and ;112 are the times when the temperature reaches d; and
di+1, the lower and upper threshold of the dependence function during the increasing respectively
decreasing part of the approximated daily time course T(t} These times can be calculated by the



inverse function of eq. (2.2.2), i.e.

) tme gt = 0<t<tmaz (23.0
1= (1= tmaz) 52, tmaz <t < 1

The integration borders | and | depend on Ty, and Tings as well as on the thresholds d; and d;y1.
According to whether the temperatures of the regarded day remain between these thresholds, cut
them or lie outside of them, we get four different cases of (T'nin, di) and (Imaz, dit1) combinations,
where EE; # 0 (cf. fig. 2), mentioned in (ALLEN 1976). Because Typin =T — % and Tppae =T + %,
these four cases correspond to four combinations of T and A drawn as shaded areas Q,, v =1,...,4in
fig. 3a). The values of the integral boundaries |; 1, |i,1, |i,2, and |; 2 are given in tab. 1. The resulting
values for f,, and fs, in eq. (2.3.3) for the four cases are listed in tab. 2.

>

v Tmm Tmi’n Tmaz Tmaz Ji,ll —|i,1 Jm’,? ]m’,?

= < = <
1 d; d; dH—l Yi tmaz tmax lmax 11— (1 - tmaz)
2 d; di—i—l Yi tmaz | Vit1 tmaz 1—- i1 (]- - tmam) 11— (1 - tmaz)
3 dx di—i—l dx dH—l 0 tma:l: tmam 1
4| d; diy1 | diga 0 Yit1 tmaz | 1 — i1 (1 — tmax) 1

Table 1: Values of the integral boundaries | and | depending on position of Trmin and Tmaz With respect

to d; and diy1, obtained with |;; = max(0,¢:,1), |:,1 = min(tis1,1,tmaz); Ji,2 = MaxX(fmae,ti+1,2), and
_TiA
li,2 = min(#;,2, 1) and eq. (2.3.4). The values ~; are defined by ~; = w.
. . ki | k P
II lf Bi 0E 1f“‘ . 01 12 Table 2: Values of fa, and fs, of DEP;
7 51 —77) depending on the combination of Tmin and
2| yirr =y | 0500 —af) | 1| 1 i ituti
i+ i i+1 i Tmaez Obtained by substituting the values
3 1 0-2 010 for | and | of tab. 1 in eq. (2.3.3). The
4 Yit1 0.57i1 1 0 values ~; are defined by ~; = w.

In the following we transform the resulting function for 5§P5 (cf. (2.3.3)) to a general polynomial form
which is more convenient for the numerical evaluation and particularly for the subsequent evaluation
of the expected value.

The solution for the general v case of eq. (2.3.3) can be expressed by

Bi((1 — k1) + k1yip1 — kaya)+
DEP; (k1 k2, T,A) = i3 ((1 — k1) + ki —kd),di— 5 <T <dipa+%5 (2.3.5)
0 else
with oy = ) —dpd) 5 L (T A _d,.) =TS
dipr —di >
The parameters ki and ks (cf. tab. 2) depend thereby on the combination of T' and A which differ
for the four cases v =1,...,4 (cf. fig. 3a).
By backsubstitution of v; and 8; DEP; ,,(k1, ka2, T, A) leads to a polynomial in T’ and a rational function
in A, which can be expressed (e.g. with the help of symbolic calculation software) by

7

3 3
DEP;  (k1, k2, T,8) =3 &5u(ks, ko) T AT 2 (2.3.6)

j=11=1
with the elements &;;(k1, k2) of the coefficient matrix

d2, .k 2 .
0i(dip1ks — dika) 4 (TR — Gikay o (k4 k)  2eTRatke)

Ea(ki ko) €Co= | 01— 3 4 B2y 4 0y (diky — digrky) — 22Fake) 0
3ai(k1—kz) 0 0
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T‘@ Trin < & < Trax< diyq $‘ @ Trin < di» Tmax > di 1

d

i+1
di Figure 2: Four different cases of daily
temperature triangles, defined through
the position of the temperature ex-
t t t t t t t t trema relative to the threshold values
i1 1,2 i1 i+1,1 041,212 d; and di+1 of the dependence function

approximation. The temperature ap-
proximation reaches the thresholds d;
resp. diy+1 at times ¢; 1 resp. tit1,1 in
the increasing part of the triangle, and
at the times ¢; 2 resp. t;41,2 in the de-
creasing part of the triangle.

a)
|
wTedp,gsA2 [T T bT+g o1
_ | i - T=di+A/2 di{
-
d; 1 - T=djyg-0v2 G
¥ HT-9OT
# I H
e HA-Q O di,1-d HA+J Op
T=d;-A/2 Ll
A

Figure 3: a) Combinations of daily temperature amplitude A and daily temperature mean T, which determine
four different possibilities (areas Q,,v =1,..., 4) of the position of the daily temperature triangle relative to

the temperature thresholds d; and di4+1 (ef. fig. 2), and hereby of the formulation of the daily dependence
function DEP; in eq. (2.3.6). b) Final integration area in the (T, A)-plane: It consists of the six areas Q.
where the expected value of the daily dependence function is evaluated, i.e. the double integral (2.3.10) is
solved. The four areas of a) are further bounded by the values of temperature means pug + 20+ and amplitudes
pa + 204, outside of which the density function approximation is 0 (ef. fig. 1¢). The areas Q1 and 4 of a)
are split by the line A = d;1 — d;.
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(2.3.7)
and g; = dp(d;) — aud;.
Example 2.1 The case of fig. 2.2 yields

> dg'_l'_l :}’T > dH_] - E,

_ A
ngn ZT_—<dg' Z?*T <di+§,
and corresponds thus in fig. 3a) to area Qy. Therefore, from tab. 2 we get the values fg, = viy1 —

Yiy fa, = 0.5('}(?+1 —42),k1 = 1, and ky = 1. With these values, the i'™ part of the approzimated
dependence function yields

DETP@J(]., L,T,A) =Bi(vis1 — 1) + 0.50:A(v2 — 77) in representation of eq. (2.3.3)
1
N (0i(dip1 — di) + 0.50(d?,; — d?)) + ci(d; — diy1) as polynomial (cf. eq. (2.5.6)).

Expected value Now, with the approximated daily dependence function integral ﬁpi we are able
to determine the expected values by using the approaches DAT (2.1.6), EDDT1, and EDDT2 (2.1.7).
(1) For approach DAT, the arguments T and A in eq. (2.3.6) are replaced by their mean values pj
and pa. Analogously to eq. (2.1.6) we get

E[DEP;] ~ ﬁpi,u(klu ko, p7, pa)- (2.3.8)

The number v and the values k; and ks depend on the position of u7 and pa in the (T, A)-plane
relatively to the actual values of d; and d; ;1 (cf. fig. 3a) and tab. 2). To obtain the total expected

values, the (E[DEP;])i>o have to be summed over all 4, i.e.

E[DEP] =" E[DEP;| ~ " DEP; (5 (k1 ka, pur, p1a) (23.9)

(2) For approaches EDDT1 and EDDT?2 we substitute in eq. (2.1.7) the daily temperature dependence
integral DEP(T,A) and the probability densities py(y) and pa(z) by their approximations DEP;
(2.3.6), pr(y), and pa(z) (2.2.3) and obtain

E@ﬁ]g[%f%ﬁwﬂwﬁﬁw@ﬁwﬁ. (2.3.10)

Because DEP; is different in the four areas Q,,v = 1,...,4 (cf. eq. (2.3.5)) in the (T, A)-plane as
shown in fig. 3a), we now have to solve the resulting integral over each of these four domains. These
integration domains are furtherly bounded by the values ps 4 204 and pua + 204 (depending on T
and A) which define the interval [z — 20, pz + 20, ] where the approximation of the density functions
is # 0 (cf. fig. 1c). Furthermore, the areas 2y and 4 are split by the line A = d;;; — d; to obtain
as integration boundaries of the inner integral continuous functions of the outer integration variable
z. The so resulting six integration domains .,k = 1,...,6 are shown in fig. 3b). The resulting
boundaries together with the values k; and ko are listed in tab. 3. For the approximation of the
expected value we get now

6
E[DEP] ~ Y. / / DEP,(k1, k,y,2) Pr(y) Pa(2)dy dz
= Q. ~

Prc
E,[DEP;]
6 ]A,K ]'f‘,pc
::Z/ / P, dy d=.
k=1 JA‘PC T.k
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K JQ,E —|ﬁ,-‘i T.k —|'IT',K. ki | ko
1 | max(0,Fa) min(d; 11 — d;, 1a) | max(d; — %, Fr) min(d; + %, H47) 0 |1
2 | max(0,Fa) min(d; 11 — d;, da) | max(d; + %, F7) min(diy1 —2,745) |0 |0
3 max([), Fa) m_in(dg_,_l - di., —Lg) max(dg-_,_l - %, l—-f-) m_in(dH] + 5 —|-f-) 1 0
4 | max(di1 —di,ba) | da max(d; — %, F7) min(d; + %, H47) 0 |1
5 | max(ditq —disFa) | Ja max(d; + 5,F7) | min(digr —5,75) | 1 | 1
6 max(d,;_,_l — di., |—a) —Lg max(dg-_,_l — %, l—-f-) mjﬂ(dg+1 —+ 5 _|-f-) 1 0

Table 3: The integration boundaries |a,x, ]a.x, |7, 8nd ]7, and the values ki and k2 depend on the
integration domains €2, which are defined by the combination of A and T (cf. fig. 3) and by the boundaries
of the parabola approximating the density functions of T and A (cf. fig. 1c).

‘We use the abbreviations Fa=pa —g-oa, IaA=pa +g-oa, Fp=pr —g-of, 4= pr + g - of.

Thereby, the integrand P, is a polynomial of 4" order in v and of 3" order in z because the density
function approximations p;(y) and pa(z) (2.2.3) can be written as polynomials

3 3
=Y a3 e
n=1 m=1

with the coeflicients

2
3 3uZ 3 3pk
4gar-r~3 4g3ch3_ 4garA3 4gia3
(neCr= 29—;‘;"3_— and pmeC, = Qg—"jgg—
_3T —3
49302-_ 4g3c3

and therefore we can write

P, = ﬁp-(kl,kg,y,z)ﬁf(y)ﬁa(z)

3 3
= ZZEJ,;(h,kz)yI 192 (chy“—l) ( mezm—l)
n=1 m=1

Z &1.(k1, k) pumC y 223+ m=3
R

jlym,n=1
e ¢4,1,m,n(k1,kz2)

3

]A"- -lTac
Z/ / Z €ji,m, n(kl,-"hg)yt—i_n 204m=30y dz. (2.3.11)

TK jlym,n=1

2

= E[DEP;]

This integral can be solved with some calculation effort, e.g. with the help of symbolic calculation
software, because the integrand as well as the bounds of the inner integral are polynomials. An
example is given at the end of this section.

Summarized, the expected value of dep(T") is determined by summing the expected values of each of
the linear pieces of the dependence function. The expected value of the i*? linear piece is calculated by
first determining the thresholds d; and d; 11 of this piece. Then the integrals over each of the areas (),
have to be solved and summed. For each area, x determines the values k; and k9 and the integration
borders |a x; |ax; |7 45 and |5 (cf. tab. 3). With the k-values, the coefficients &;,(k1,k2) can now
be determined from matrix C}, (2.3.7) and with this information, the double integral (2.3.11) can be
solved.

The following example explains this procedure for k = 5.

Example 2.2 For the case k = 5, which corresponds to fig. 2.2, we get with diy1 —d; > pa —g-0oa,
dg-l—‘ﬁ‘ > pr—g-or, and diy1— ‘5 < pr—+g-or, from tab 3 thevalues ki =1, ks =1, |a 5 = diz1—d;,

]as—ﬁa-l—g oa; |75 =di + 5 (md]TS_dHl — A Hence the 5" part of eq. 2.9.11 is given by
~ pa+goa pdiz1—% _
Bs(D / C&‘,i:m,n(la 1)y!tn=227+m=3dy dz
div1—ds it jlmn
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pa+goa 3 ) d; 3 3
= /d Z Z pm z_?+m—3 /d . ZZ Cn&j,li(]--, 1) y!—i—n—?dy dz

because only 51 1, §21 7# 0 we get thus

.ua-i-gcra 2 diy1—% 3
= / Z pm 2T 353,1(1,1)/ Z Cn Y1 2dy dz
n=1

i+1—di j=1m=1 di+3

pa+goa 2 3 3 Cn . .
- /d Zzp T 54(1,1) Z; d‘ﬂ-i-l_i)n_(di-l-i)n)dz

S L R n—1

a

pa+goa 2 3

- /d DD pm TG (1LD)

+1di =1 m=1

"

T
ao

( (6 @ =)+ 2 @0 - )+ S @8, - ) +

Gt L (e —d) + D ()

"

-~
ax

%(dﬁ-i-l—di)) -I-C—Sz)dz

agz

pa+goa 2 3 3 |
— / Z Z pméj1(1,1) - Z a3 g
dis1—

di j=1m=1 n=0
2 3 3 ot 1(1,1)a
i1(1, _ -
— Z ZJT_Jm+n n ((pa +g0a)3+m+n 2 — (dir —di)j+m+ﬂ 2)_
j=1m=1n=0

3 Properties of Resulting Methods

Table 4 gives an overview of the eight different methods, which have been derived in this paper, with
respect to their temporal resolution, their data requirements and the approximations they use.

The methods differ particularly in the way in which they use the information about the temperature
variability contained in the input data.

Method EDH takes into account the intra daily variability by using hourly input data. Methods
EDDT1, EDHT1, EDDT2, EDHT2, and DAT extract the information about the intra daily variabil-
ity from daily temperature amplitudes by assuming a triangle-shaped temperature course, which is
either used to estimate the statistical parameters of the hourly temperatures or to calculate the daily
dependence function and its expected value. For the case that only daily (method EDM) or even long
term means (method DA) are available, intra daily variability is neglected.

4 Discussion

In this paper, a range of new approaches for aggregating temperature dependence functions to longer
time periods have been derived. The methods are constructed for a variety of input data resolutions
and allow the inclusion of temporal temperature variability in ecological models. Table 4 gives an
overview of these methods, their temporal resolution, input data needs and any approximations used.
Thus, an appropriate method now can be chosen from this set, depending on the available input data,
the needed aggregation period, and the necessary precision .
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Method Abbr. Type Input data exact Approx-  aprox.
Time re- Variables Statistical ~ formula  mation formula
solution parameters

Expectation value EDH E hours T LT, OA 2.1.3 dep 2.3.1

dependence function

of hourly temperatures

Expectation value of EDHT1 E days T, W Oy 2.1.3 dep, 2.3.1,

dependence function A= A, OA TC 2.3.2

of hourly temperatures Tmaz — Tmin

approx. by triangle

based on mean and amplitude

Expectation value of EDDT1 E days T, W O 2.1.7 dep, 2.3.11

dependence function A= KA, OA TC,

of hourly temperature Tmazr — Tmin ND

approx. by triangle

based on mean and amplitude

Expectation value of EDHT2 E days Tm = K, > O, 2.1.3 dep, 2.3.1,

dependence function Tm”;T"”" LA, OA TC 2.3.2

of hourly temperatures A=

approx. bytriangle Tmaz — Tmin

based on extrema

Expectation value of EDDT2 E days Tm = KT, O, 2.1.7 dep, 2.3.11

dependence function Tm”;T"”" HUA,OA TC,

of daily temperature A= ND

triangle based on Tmazr — Tmin

extrema

Expectation value of EDM E days T Wiy OA, 2.1.4 dep 2.3.1

dependence function

of daily

temperature mean

Dependence function DAT A months I A Iy A 2.1.6 dep, 2.3.8

of average daily TC

temperature triangle

Dependence function of DA A months Wi = pT WF 2.1.1 dep 2.1.1

average temperature

Table 4: Overview over the temperature dependence aggregation methods: They are divided according
to the type of method (explicit expectation value calculation, or dependence function of average input), the
resolution and kind of the needed input data (7": hourly temperature, Tmaz, Tmin: daily temperature extrema,
A: daily temperature amplitude, T: daily temperature mean, T,,: approximated daily temperature mean,
i monthly mean temperature, o: monthly mean amplitude), the statistical parameters estimated from
these data (u: mean and o: standarddeviation) and the approximations used (dep: dependence function, TC:
daily temperature course, ND: normal distribution). References to the formulae are given in columns “exact

formula” and “approx. formula”. Note, the method DA is a widly used approach.

The main characteristics and differences of the methods are:

(1) Method EDH takes into account the intra daily variability by using hourly input data and hence
including the temperature variance. (2) Methods EDDT1, EDHT1, EDDT2, EDHT2, and DAT ex-
tract the information about the intra daily variability from daily temperature amplitudes by assuming
a triangle-shaped temperature course, which is either used to estimate the statistical parameters of
the hourly temperatures or to calculate the daily dependence function and its expected value. (3)
Method EDM uses the inter-daily variability by the variances of daily mean temperatures, but neglects
the intra daily variability.

Thus, all of the presented approaches are able, to different extents, to include temporal temperature
variability, in contrast to the widely used application of the dependence function to (long term) tem-
perature means (approach DA in tab. 4).

However, the new methods might have a certain bias arising from the used approximations and
assumptions. They assume the temperature variables to be normally distributed and temperature
mean and amplitude to be independent of each other, which is probably not always correct. The
assumption of a daily triangle temperature course similar to the triangulation method of Lindsey and
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Newman (1956), might also appear crude. However, physiological time calculated with this triangula-
tion can be sufficiently precise, if the times of the daily temperature maxima are known, as shown for
the example of codling moth development (LISCHKE 1991). Thus for an adequate use of the triangle
approximation either the temperature maximum time is required for each day or a method which
calculates the daily dependence function based on the triangulation independently of this time.

The latter holds for the methods EDDT1 and EDDT2, where the temperature maximum time drops
out during the calculation of the daily temperature dependence. This could be an advantage over the
methods EDHT1 and EDHT?2 and also over the sine-sine-method of Allen (1976), because in their the
daily dependence approximation this time still appears, and hence has to be estimated e.g. to be at
noon.

To assess the effects of the aforementioned potential biases and the applicability of the presented
methods, the precision and efficiency of the methods have been tested (LISCHKE ET AL. 1996) in
several ecological applications and compared to other common methods. The tests revealed that it
can be crucial to use all available variability information dependent on the precision requirements to
obtain satisfying results. Also, the approaches EDH, EDHT1, and EDHT2 combined high precision
with high speed on their respective levels of resolution. The effect of the bias introduced by assuming
the temperature maximum to occur at noon in EDHT1 and EDHT2 turned out to be negligible.

The presented methods can be used in a wide range of ecological models where variable abiotic
factors are affecting the dynamics, e.g. in pest prognosis models. They can be particularly useful
where dynamics which still depend on smaller time scale variations have to be simulated on large
time scales, as e.g. weather dependent plant growth in dynamic vegetation models which are used to
assess the impact of climate change over centuries. For instance, the forest succession model FOR-
CLIM reacts very sensitively (FISCHLIN ET AL. 1994) to whether the climate input is formulated as
constant input or by a stochastic weather generator on the monthly scale but runs for several hundred
years. Another example are models for the simulation of the forest carbon cycle as reviewed by Per-
ruchoud and Fischlin (1995), which depend on temperature and run for even longer simulation periods.

The construction of the approaches is not restricted to the specific approximations we presented
here, other ones could be chosen as e.g. quadratic polynomials for the daily temperature course,
exponential functions to approximate the temperature dependence function, or piecewise linear poly-
nomials to approximate density functions. The latter could extend the range of applicability also to
other than normal distributions, even to empirical ones.

The approaches are also not restricted to dependence functions of temperature. The methods EDH
and EDM which do not assume a certain daily temperature course can also be applied to depen-
dence functions of other abiotic factors, or more generally to the calculation of arbitrary functions of
normally distributed random variables. We used e.g. the method EDH successfully to calculate the
expected values of a nonlinear light dependence function in the forest dynamics model DiISCFORM
(LISCHKE ET AL. 1995).

The concept of approximating the daily temperature course, which is the basis of the methods DAT,
EDHT1, EDHT2, EDDT1, and EDDT2 could be transferred to other periodicities, as e.g. inter-
decadal temperature oscillations (MANN ET AL. 1995) or the yearly temperature course. This would
allow the estimation of long term dependence functions of monthly temperature means, given yearly
statistic parameters of extrema and means of daily or monthly temperature means.

The methods are even not restricted to temporal variability. It is possible to also apply them for
spatially varying input variables, e.g. during an spatial model upscaling.
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5 Conclusions

Now we have a variety of methods at hand, which can be applied to every temperature dependence
function by simple linearisation. They are suitable for different temperature input data resolutions,
e.g. minutely or hourly temperature, daily mean and daily amplitude, daily extrema, monthly mean
and monthly mean day-amplitude and monthly mean. With these methods it is possible to use as
much information about the variability in the input data as available through daily amplitudes or
standard deviations of hourly temperatures, and can be used for arbitrarily large time steps ranging
from days to millenia. Finally they can be applied to any kind of dependence function in many fields
of ecological modelling applications.
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A Overview of the used symbols

Table 5: Table of Symbols

Symbol Meaning Unit
t time days
T(t) temperature at time ¢ o]
T(¢) approximation of temperature at time ¢ b
T daily temperature average oo
Tmin daily minimum temperature b
Trmaz daily maximum temperature b
tmaz time of daily maximum temperature days
A daily temperature amplitude bc
dep(T) temperature dependence function -
%(T) approximation of temperature dependence
function -
%1; (T) approximation for i*h linear part of
temperature dependence function -
d; discretization of %{T) , lower temperature
threshold of dp,(T’) el
dit1 upper temperature threshold of E;;i (T) b
E[X] expected value of random variable X same as X
px(X) density function of random variable X -
px(X) mean of random variable X same as X
ox(X) standarddeviation of random variable X same as X
px(X) approximation of density funetion of
random variable X -
Cny Pm coefficients of p7(y) and pa(z) in polynomial form
[ boundaries of interval where px(z) #0,X =T,A °C
DEP daily temperature dependence function integral -
DEP;, (k1,k2,T,A) daily integral over i’k linear part of appro-
ximation of temperature dependence function -
Q integration area -
151 integration boundaries days,’ C
due to position of Trmin and Trmax
relatively to d; and di41
i=1,....m index of dependence function discretization -
v, K indices of subintegrals and integration areas -
a, 8,7, variables used for substitution

falphaa fbeta
fj,;(kl,kQ) eCp

coefficients of ﬁji(kl,v, k2,) in polynomial form
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