
RASS:
Towards bridging the gap between interactive

and off-line simulation.

Jurg Thony, Andreas Fischlin and Dimitrios Gyalistras
Systems Ecology

Institute of Terrestrial Ecology
Swiss Federal Institute of Technology Zurich (ETHZ)

CH-8952 Schlieren/Zurich

ABSTRACT
Interactive model exploration is an important step in

the process of model-building of iII-defined systems such
as ecosystems, a task which is well supported by
RAMSES (Research Aids for the Modelling and
Simulation of Environmental Systems). However,
interactive 'simulation is of minor interest at a later stage
of research, when large scale batch oriented simulation
experiments are needed.

RASS, the RAMSES S.imulation S.erver, typically
located on a high performance computer, translates, com­
piles, links, and executes in a batch mode interactive
RAMSES model definition l1rograms [MDP]. MDPs
must be given in source form and formulated according to
one or any combination of the following standard forma­
lisms: SQM (Sequential Machine), DESS (Differential
Equation System Specification), or DEVS (Discrete
EVent System Specification). The simulation results
generated and returned by RASS can then be explored
interactively by means of the post-analysis component of
RAMSES.

RASS was found to allow for automatic translation of
interactive programs developed for a graphical user-inter­
face with windows and menus in order to execute them in
a batch mode to produce correct and reliable simulation
results. Three complex case studies from the field of
ecology and engineering showed that performance gains of
l' 100-7'200% (overhead included) can be obtained when
RASS is run on a SUN S 10 server relative to the time
needed when running the MDP interactively on an average
personal computer. Since all transfers showed to be user­
friendly and smooth, we concluded that RASS offers
RAMSES simulationists an efficient and attractive alter­
native for solving interactive MDPs whenever off-line
simulations are needed, or when it is a necessity because
of the high computing requirements.

1 INTRODUCTION
The simulation of ill-defined systems, e.g. ecological

systems, challenge most existing simulation software by
specific, sophisticated requirements (Cellier and Fischlin,
1982; Kreutzer 1986; Fischlin and Ulrich 1987; Vancso et
a1 1987; Vancso 1990).

At an early stage of a research project, an interactive
simulation environment is of paramount help for the

modeling of iII-defined systems. However, at later stages,
i.e. when simulation studies such as sensitivity analysis,
parameter identification, or stability properties are of
prime interest, batch production of simulation results is
needed. In order to satisfy both needs during the entire
course of a research project, a simulation software must
support both interactive and batch simulations.

The RAMSES [Research Aids for the Modelling and
Simulation of Environmental Systems] software (Fischlin
1991) was designed to support interactive, modular mo­
deling and simulation of ill-defined systems with one or
any combination of the classical model formalisms SQM
[SeQuential Machine], DESS [Differential Equation
System Specification], DEVS [Discrete EVent System
Specification] (Zeigler 1976, 1979; Wymore 1984).

In RAMSES, any model implementation is made in
form of a so-called MDP [Model Definition Program]
(Fischlin et al. 1994). A MDP represents an interactive
program and therefore shares the common problems of all
sophisticated interactive software. These are the limited
portability and the computational overhead of the user
interface.

Thus the following questions arise: Is it possible to
reuse an interactive simulation program, such as a
RAMSES-MDP for non-interactive batch calculations
without any changes on the source level? Which problems
need to be solved to correctly run MDPs within a batch
simulation environment? How valid are the simulation
results? Which gain in performance can be achieved thanks
to reduced graphics overhead and more powerful machines?

The here presented solution RASS [RAMSES
Simulation Server] forms a new component of RAMSES.
RASS receives interactive MDPs in source form, runs
them off-line on a simulation server, and generates simu­
lation results, which can be again explored interactively
by the Post-Analysis component of RAMSES. First we
present the architecture of RASS and discuss the concep­
tual problems which had to be solved. Three case studies
serve to demonstrate the obtainable performance gain and
the quality of the simulation results. Finally, portability
issues and future enhancements are discussed.

2 MATERIAL
The current implementation of RAMSES covers inter­

active MDP development and simulation by several

THONY, J., FISCHLIN, A. & GY ALISTRAS, D., 1994. RASS: Towards bridging the gap
between interactive and off-line simulations. In: J. Halin, W.K.a.R.R. (ed.), CISS­
First loint Conference of International Simulation Societies, ZUrich, Switzerland,
The Society for Computer Simulation International, P:O: Box 17900, San Diego,
Cal. 92177, USA, pp. 99-103

components such as the standard DM [Dialog Machine]
(Fischlin and Schaufelberger 1987; Fischlin et al. 1987),
the standard MW [ModeIWorks], and the PA-session
[Post-simulation Analysis].

RASS was implemented in Modula-2 using
MacMETH (Wirth et al. 1992) on Macintosh computers
and EPe Modula-2 (Anonymous 1992) on SUN worksta­
tions. It uses a new batch oriented implementation of the
DM [Batch-Dialog Machine].

Three MDPs, ForClim, Diversity, and Numlnt were
used as case studies.

All simulation experiments were performed either on
an Apple Macintosh Quadra 700 for RAMSES or on a
SUN S 10 for RASS. On the Macintosh we measured the
time inside the MDPs with no other applications running
during simulation. On the SUN we measured the
simulation/experiment with the Unix time command
during a minimal work load.

3 RESULTS

3.1 Simulation with RASS

A RASS task is conceptually a RAMSES simulation
session (Fischlin 1991). However, RASS implements the
simulation session in a different way.

Interactive

modeling & simulation

RAMSES

MW

Interactive

Post Analysis
PA

Batch simulation

RASS

Fig. I: State transitions while developing and
solving models using RASS within RAMSES.

A typical modeling-simulation cycle (Fig. 1) involves the
following steps:

Develop a model interactively in the RAMSES
simulation and modeling session, and run local
simulations interactively.

2 Produce model behaviour with RASS in a batch
mode.

3 Analyse the simulation results interactively in the
PA session.

100

3.2 and

RASS was designed to fulfil the following maIO
requirements:

RASS has to achieve a high portability in two ways:
First it should be easily portable. Second any MDP
including its corresponding input/output data files should
be exchangeable between the batch and interactive simu­
lation environment without any changes.

The simulation results of RASS have to be reliable,
i.e. the batch processing must not hamper the validity of
the simulation results.

The transition from the interactive RAMSES to the
batch oriented RASS should be smooth, and require a .
minimum of user interactions.

3.2.1 RASS Architecture

RASS resides on top of several software layers, which
enhance portability and software maintenance (Fig. 2).

RAMSES-MDP

MW RASS-MW
DM Batch-DM

SysDep, Portab & Math

Modula 2 lib., OS/ HW Modula 2 lib., OS/ HW

Fig. 2: Architecture of RAMSES and RASS.

All RAMSES software is implemented on top of the
DM using the language Modula-2. The DM is a library
that allows to program interactive applications indepen­
dently from the underlying graphical user interface. All
interactive DM-commands are designed as a program state
transition with a known precondition and a defined post­
condition. The DM allows the transition only if the pre­
condition is true and the postcondition can be fulfilled;
otherwise the interactive DM modally demands a user
intervention, usually with a default answer to the request.

Since RASS is not interactive, a new DM implemen­
tation [Batch-DM] was necessary. The Batch-DM has the
same programmatic interface, but has no visible user in­
terface. An optional terminal like VO is provided. The
various DM components are maintained internally, such

that the state transitions are the same as in the interactive
DM.

The Batch-DM is built solely on top of the two
modules SysDep and Portab. The only exception is the
DMMathLib. SysDep and Portab hide the local Modula-2
library and the OS/hardware. To prevent performance loss,
we implemented the DMMathLib with direct calls to the
machine dependent math library, instead of encapsulating
these functions in SysDep.

3.2.2 MDPs with RASS

Essential is that any MDP has the same execution
thread regardless whether executed interactively by MW or
by RASS.

A RAMSES-MDP has very few interactive
components. However due to the open system architecture
such as the DM interface, it is possible to add interactive
elements (Fig. 2). Since most of them are potential
branches in the execution thread, special care has to be
taken. The Batch-DM handles the core user interface
components of the DM as follows:

Components without default actions are not imp le­
mentable in the Batch-DM; they lead to a program abort.
However, in most cases they can be easily replaced by the
programmer with another DM function.

Dialogues: DM dialogues entities have default values.
Therefore the dialogues lead to a predictable postcondition.

Menus: The menu structure is maintained internally, but
no menus are shown on a screen. However, execution of
menu commands is possible under program control.

Windows: No windows are provided, however the text
written on them is directed to a standard output file.

3.2.3 Data and Result Files

RASS is based on the same DM library interface as
the standard MW. Both expect and produce files in textual
form. Therefore the input and output files are fully
interchangeable.

3.2.4 Current

A simulation experiment to be solved by RASS is
given by a MDP, and the corresponding input data files -
only these have to be transferred and converted according
to the conventions of the specific simulation host. The
transfer and translation can be accomplished, e.g. by the
means of FTP [File Transfer Protocol].

To provide a user-friendly transition from interactive
RAMSES to RASS we created a tool called
RASSMakeMake. It generates automatically a make script
that produces the executable simulation program.

The output of a simulation can be explored locally or
transferred back to the host where the interactive PA
resides.

10 1

3.3 Case Studies

We selected three case studies to cover all three
currently by RAMSES supported standard modeling
formalisms (SQM, DEVS, and DESS):

a) ForClim (Bugmann 1994), a SQM that models the
stochastic species succession of forests and is currently
used to study the impact of climatic change on forests
(Bugmann and Fischlin 1994). ForCUm's input data files
contained machine specific characters which had to be re­
moved before the ForCUm was able to process them under
RASS. We ran that experiment that generates the so-called
reference output, which was not numerically identical;
but, since ForCUm's output depends on pseudo-random
numbers it is highly dependent on the precision of the
floating point instructions. However, the results deviate
only insignificantly from the expectations, and were
therefore interpreted as correct.

b) Diversity (Fischlin et at 1994), a DEVS simulat­
ing thereinvasion of species and diversity restoration on
an island, which has been hit by a volcanic eruption.
RASS returned exactly the same number of years for
diversity restoration as the interactive version.

c) Numlnt, a DESS that compares the position of an
earth satellite computed with fixed step integration
methods of various orders with an analytically determined
expectation. The purpose of Numlnt is to explore the
range of valid simulation results, limited either by too big
or too small step sizes (rounding errors). The RASS re­
sults were the same for lower order integration methods,
whereas those of the higher order integration methods dif­
fered for the smaller step sizes due to the rounding errors.

All three MDPs were transferable without any
changes. The only exception was ForCUm which required
initially one iteration.

3.3.1 Performance

In order to compare a simulation cycle of an interac­
tive MDP between interactive RAMSES and RASS, we
started measurements only from the moment of an already
developed RAMSES-MDP and neglected constant terms if
they were approximately the same on both hosts, e.g. the
time to build and linklload the MDP.

Terms:
tt = Turnaround time.
ts = Time to execute a simulation experiment.
tc = Time to transfer MDPs and/or data files to the

simulation host and transfer the result files back to
the PA host.

ta = Time to set up the interactive analysis [PA] of the
results.

tt (RAMSES) = ts
tt (RASS) = ts + tc + ta
Since ta « ts we get:
tt (RAMSES) = ts
tt (RASS) = ts + tc

MW RASS
Mac SUN

MDP tt=ts ts tc tt=ts+tc
ForClim 37800 3134 132 3266
Diversity 638 13 120 133
Numlnt 70758 860 115 975

Table 1: Turnaround time in seconds of three case studies
in the interactive RAMSES environment on a Macintosh
Quadra 700 and the batch RASS environment on a SUN
S10.

The over-all performance gain obtainable by the simu­
lationist was a factor 12-82 for ts and a factor 11-72 for tt
(Table 1).

3.3.2 Post

The RAMSES-PA session allows to interactively ex­
plore simulation results previously written to a stash file
by MW or RASS (Fig. 1). The PA supports an arbitrary
number of stash files, simulation runs per file, and models
per run, limited only by the computer's available
memory. Based on MW, PA mimics the model
behaviours by reading the results from stash files, instead
of computing them on-line (Fig. 3). Not only does it
allow to compare stored results among several stash files,
but also with interactively simulated model behaviours.

r tit Shal l pOIIRnelysls File (dlt Setting I Windows Solus 29/Ci/94 ,, : 11

Model perameten
lOIl1 A�.� Nm1

Data frames
4 ..

PA A .. put .. ,-': lI_ts

""

L "�.-.r��!:J��::�-=i!,.MS�V(I"
_, '.rel , "2.4 (• .raj

(I $1011. lbrl,:lI.)/)

(nt.7""�t.rI)

.:1 f'erCliM-£: MI.n. Mrir_
� 8t07/1# 4br'.'_.'

mu IbMI �_t_l,)

Simulation re.ults

.)('" :-/.��;!"�:-:�::!�SS
(,., Ibnll#nl!bll# u;"./.'_.'

.:1 '.re .. E: M tr
C""Ibn,_w,,.l4rI.2lI_.'

• • � ,.. : l"I_t .,_to..
• • '·/MWI ... �

-
1140.0
, 160.0
1110.0
'20.-0

.. ;;-Larix"iW.I�
.v$ Mota ,xc.k .. :.
� • ., Pinus ","*"a:.
.. ·S'hIs monbM:.
.. ·II P_lfJy .. trls�
.. 7T_*m .. :.""

Table
OW-
14 90110111
.. I,9SI,44Q7

1:11.6"91101
• 00

s1r.:.*"

ew&.
".""'1150
...
...
. ..

41 �lbo
___ f'eJU:e
...• - ,. ..
-""' F.II\I
"._ frob

I!IoJ.a
0 ...
0 ...
0 ...
0 ...
....
0 . ..

-­.....
.....
.....
... 00
... 00
... 00

Fig. 3: Typical screen, here from the case study
ForClim, of a RAMSES post-analysis session
on the simulationist's personal computer. This
session supports the interactive analysis of the
uploaded simulation results by processing a stash
file, which RASS previously produced on the
simulation server.

We tested PA with ten ForClim simulation runs,
which lasted under RASS ts = 145s and produced a 944kB

102

stash file. For each run were documented 95 variables at
600 simulation time points. Transfer of the stash file to
the local personal computer required 26s, such that,
together with the transfer of ForClim to the RASS-server,
tc = 76s. Loading of the PA-session required ca. 4s, and
setting up of the workspace (Fig. 3), including the prepa­
ration of all runs within PA, additional 12s, yielding ta =
16s. The graphical representation and tabulation of six
variables from a single simulation run required ca. 6s
(Fig. 3), whereas the simultaneous inspection of the same
variable from all ten runs required 27s. These times
increased by ca. 14 % (to 7s and 31s, respectively) when
the stash file was directly accessed via a LAN from the
mass storage device of the simulation server. Thus, the
average time to inspect one simulation run amounted to .
ca. 30s, via the LAN to only 27s.

The combined use of RASS and PA compares favourably
with the 85s needed for a single ForCUm simulation with
the interactive MW on the simulationist's computer. We
concluded that the RAMSES-PA not only allows to
efficiently and flexibly analyse batch simulation results,
but that it may even be of interest for inspecting model
behaviours interactively during a model development
phase.

4 DISCUSSION

4.1 Domain of RASS

From the perspective of the simulationist, the break
even point for RASS depends on the available computer
infrastructure. The easier to use and the faster the connec­
tion between the interactive and the RASS host is, the
smaller simulation experiments may get to be still
suitable.

The actual break even point is given by:

tt (RAMSES) = tt (RASS) = tc + ts (RASS)
=> ts (RAMSES) - ts (RASS) = tc
A gain in performance occurs if

tc < (ts (RAMSES) - ts (RASS»

A typical tc for a small model is less than 3 minutes.
The average performance gain for ts is a factor 12 to 82 .

Given a model with tc = 3 minutes and a modest per­
formance factor of ts = 12, the break even point for a
single simulation run is reached for ts (RAMSES) = 196s.
Note, if a simulation experiment is executed within a
loop, the smaller tc becomes, and therefore the sooner the
break point may be reached.

For ForClim this was found to be already the case if a
structured simulation experiment consists at least of two
runs (See 3.3.2 Post Analysis).

4.2

In order to make Modula-2 code portable, special care
had to be taken. Modula-2 is a formally well-defined
language with some exceptions. In particular the type

transfer functions and the LONG type language extensions
caused portability problems. Therefore RASS and the
Batch-DM were written in a portable subset of Modula-2.

There exists no standard library for Modula-2.
However, in order to port RASS to a different machine
only the modules SysDep, Portab, and DMMathLib have
to be re-implemented. SysDep and Portab consist of 593
lines of source code in the EPC Modula-2 imple­
mentation.

Since the RASS binary to text conversion for
numbers is dependent of the IEEE floating-point standard,
it runs only on machines which follow this standard.

4.3 Planned

We plan to implement a RASS shell with communi­
cation facility. This would allow a user transparent
transfer of MDPs and/or data files.

Not every powerful host provides a Modula-2
compiler. ft is planned to apply a Modula-2 to C transla­
tor to RASS and MDPs in order to run simulations on
these hosts. Since most C compilers generate optimised
code, an additional gain in performance could be expected.

5 CONCLUSIONS
RASS is capable of solving correctly and efficiently

any simulation experiment, given it is defined in form of
a RAMSES-MDP (Model Definition £rogram).

This is possible regardless of the original design for
interactive usage. We could demonstrate that the 'Dialog
Machine' provides a solid basis to write interactive
programs such as a RAMSES-MDPs, since they could be
executed in a batch mode with only few, insignificant
restrictions. Although the correctness of any MOP solved
by RASS can not be proven, at least for the case-studies
RASS produced correct results. Thus, the uploading from
an interactively developed RAMSES-MDP to a RASS
batch simulation server is possible and can even be
implemented in a smooth user transparent manner.

In the tested "real-world" case studies, we obtained
substantial average gains in performance (e.g. between
l' 1 00% and 7'200% for the simulationist's turnaround­
time (Table 1)). Therefore RASS allows to profit in two
ways: First it allows to freely engage in interactive
development of complex simulation models on widely
available PCs or work-stations using the interactive
RAMSES software. Second, at later stages, i.e. when
complex, well defined simulation experiments are of
prime interest, the RAMSES-MDP can be easily trans­
ferred to more powerful machines, e.g. a super-computer,
running the RASS simulation server.

Since RASS is highly portable and can be imple­
mented easily on any host-computer, RASS provides a
user-friendly simulation environment. It allows smooth
transitions: a) from interactive work-station based to
simulation server based off-line simulations, b) from the
server back to simulationist's work-station for an inter-

active exploration and analysis of the simulation results
under the RAMSES post-analysis [PAl session.

REFERENCES

Anonymous. 1992. EPC Modula 2. User's Reference Manual.
Second Edition. January 1992. Edinburgh Portable Compilers Ltd.

Bugmann, H. 1994. "On the Ecology of Mountainous Forests in a
Changing Climate: A Simulation Study." Ph.D. thesis No. 10638, Swiss
Federal Institute of Technology ZUrich (ETHZ).

Bugmann, H. and Fischlin, A. 1994. "Comparing the behaviour of
mountainous forest succession models in a changing climate." In
Beniston, M. (ed.), Mountain Environments in Changing Climates.
Routdlege, London & New York: 206 221 (invited, refereed).

Cellier, F.E. and Fischlin, A. 1982. "Computer assisted modelling of.
ill-defined systems." In Proceeding. of the 5th European Meeting on
Cybernetics and Systems Research, (University of Vienna, Austria,
April 8 11, 1980), McGraw Hill, Washington, N.Y., 417 429.

Fischlin, A.; Gyalistras, D.; Roth, 0.; Ulrich, M.; ThOny, J.;
Nemecek, T.; Bugmann, H. and Thommen, F. 1994. ModelWorks 2.2:

 An interactive simulations environment for work stations and personal
computers. Second, completelyrevized edition. Internal Report No. 14,
 Systems Ecology Group, ETH Zurich.

Fischlin,A and Schaufelberger, W. 1987. "Arbeitsplatzrechner im
technisch naturwissenschaftlichen Hochschulunterricht." Bulletin
SEVNSE, 78 (Januar): 15 21.

Fischlin, A. 1991. "Interactive Modeling and Simulation of
Environmental Systems on Workstations." In Moller, D.P.F. (ed.),
Analysis of Dynamic Systems in Medicine, Biology, and Ecology.
Informatik Fachberichte 275, Springer, Berlin a.o. 131 145.

Fischlin, A.; Mansour, M.A.; Rimvall, M. and Schaufelberger, W.
1987. "Simulation and computer aided control system design in
engineering education." In Troch,l., Kopacek,P. & Breitenecker, F.
(eds.), Simulo.tion of Control Systems, Pergamon Press, Oxford a.o. 51
60.

Fischlin, A. and Ulrich, M. 1987. "Interaktive Simulation schlecht­
definierter Systeme auf modemen Arbeitsplatzrechnem: die Modula 2
Simulationssoftware ModeIWorks." In Proceedings of Simulation in
Biologie und Medizin, February, 27 28, 1987, Vieweg, Braunschweig:
1 8.

Kreutzer, W. 1986. System simulation: programming styles and
languages. Sydney a.o.: Addison Wesley.

Vancso, K.; .Fischlin, A. and Schaufelberger, W. 1987. "Die
Entwicklung interaktiver Modellierungs- und Simulationssoftware mit
Modula 2." .In: Halin, J. (ed.), Simulationstechnik, Informatik­
Fachberichte 150, Springer, Berlin: 239 249.

Vancso Polacsek, K. 1990. "Theory and practice of computer
_ assisted simulation and-modeling on professional workstations." Ph.D.
thesis No. 9104 Swiss Federal Institute of Technology Zurich (ETHZ).

Wymore, A.W. 1984. "Theory of Systems". In Handbook of
Software Engineering, Van Nostrand Reinhold Company, New York.

Wirth, N.; Gutknecht, J.; Heiz, W.; Schar, H.; Seiler; H., Vetterli,
C. and Fischlin, A. 1992. MacMETH. A fast Modula 2 language system
for the Apple Macintosh. User Manual. 4th. completely revised ed.,
Departement Informatik ETH Zurich, Switzerland.

Zeigler, B.P. 1976. Theory of modelling and simulation. Wiley,
New York a.o.

Zeigler, B.P. 1979. "Multilevel multiformalism modeling: an
ecosystem example." In Theoretical Systems Ecology, Academic Press,
New York, 17 54.

103

