
Text Analysis Tools (TAT)
Andreas Fischlin

The following describes TAT v1.0fc9 going together with REtool v1.8fc9

Table of Contents

Why TAT?! 1

1 Methods of producing from the IPCC draft PDF a text file! 3

2 Processing the data (core of TAT)! 4

3 General rules to observe and use of draft specific parameters! 7

4 Installation Hints! 11

4a) Unix dependent part! 11

4b) FileMaker dependent part! 14

5 Examples! 16

Example 1 - Chapter 1 of SR1.5 ZOD (simple example)! 16

Example 2 - Ch3 SR1.5 ZOD (fixing typos)! 26

Example 3 - Processing Table of Content of Front Matter SR1.5 ZOD! 32

Example 4 - Process entire IPCC SR1.5 ZOD with front and back matter! 39

Why TAT?
The purpose of TAT is to extract from an IPCC draft, typically made available in form of a
PDF (or perhaps also in form of a Word file), the meta data on the draft’s content. Text
processing is in general already quite complex, which is of course even more true for
scientific texts such as IPCC reports. During review rounds it is necessary to reliably
reference text passages, which is typically done by page and line numbers. The latter
characterize a draft in contrast to the final product no longer having line numbers. The meta
data TAT extracts are page and line numbers for every element contained in IPCC drafts, i.e.
figures, tables, boxes, box figures, box tables, FAQs, footnotes, and paragraphs.

Unfortunately todays text processing tools, notably Word, do not provide the means to
reliably extract page and line numbers as needed for referencing text portions or other
elements of a draft. These numbers are, however, of course quite essential, notably during
the critical review rounds by IPCC. Note, even if Word would provide such a feature or at

TAT 1.0fc9, 14.Sep.2018

least allow to directly extract the wanted information through VBA or similar means (e.g.
AppleScript), it might not work always reliably unless done on the very same system on
which an IPCC draft PDF is produced, since page and line breaks are determined by Word at
the moment of generating the PDF and may depend on the fonts used and perhaps even the
precise font versions present during the rendering. Thus elaborate evaluation of many
techniques showed that not the Word file, but the actual PDF generated provides the most
reliable source of the wanted meta information.

The solution to all these technical obstacles is TAT. TAT can extract the needed information
on page and line numbers for headings, figures, tables, boxes, footnotes, and many other
parts of an IPCC draft in a reliable manner if the PDF has been properly generated1. It does
that by extracting the wanted information from any PDF containing exactly page and line
numbers as used by IPCC authors, reviewers, and IPCC Review Editors (RE). Extraction
comes first in form of text files (Step 1, see below), which are then stepwise filtered, modified,
and imported into a data base (TAT-drafttext) and there processed until a spreadsheet can be
exported from the final data base (TAT-draftTOC). The result is a table, a large Table Of
Content, listing all elements of the original draft text’s elements, but in contrast to an ordinary
table of contents, not only with the associated page numbers, but also with line numbers. E.g.
you know where to find a figure or on which page at which line a section starts. In principle
TAT can go so far to even extract page and line numbers of any draft element, even
paragraphs or individual words, should that be of interest.

Notably page numbers and line numbers are of great interest to anyone involved in the IPCC
review rounds. It is in particular also needed by REtool to support correct display of text
pieces to which a comment refers and to conveniently jump to those locations. Note,
however, not only Review Editors, but also authors or TSU can analyze and compare drafts
easier using TAT.

The following help file contains rough instructions on how to use TAT. This is done with the
view to support first of all REtool, a tool, which can greatly facilitate to work of a Review
Editor (RE).

Note also, as of this writing all TAT software as described here has been tested only on Mac
OS X systems. However, on any UNIX based platform where FileMaker is also available,
TAT should run fully. This excludes Windows partly, since the first part of TAT makes heavy
use of UNIX tools such as awk and shell scripts. They are needed for the first processing of
the text files involved in the extraction of the meta data. Fortunately, TAT processing can also
be done stepwise on several systems. E.g. the Unix dependent parts (Steps 2, 3, and 4, see
below) can be done on any UNIX system, while all other steps as the second FileMaker
dependent steps 5 till 9 (see below), which no longer require Unix features, could then be
done on Windows and/or Macintosh systems.

The following consists of five parts:

(i) ! How to produce an initial text file from the original pdf (Note, there seems to exist
no reliable method to work from Word files themselves due to Word’s limited
functionality).

TAT 1.0fc9, 14.Sep.2018

1 This means that no text has been converted into a bitmap graphic. Unfortunately unless the generation of the
PDF is carefully done, Word may easily generate in this sense corrupted PDF’s, notably under Windows.

(ii) ! How to process the thus obtained text file to prepare it for import into REtool data
bases and how to process the meta data within REtool data bases to obtain the
final result (in form of a metadata spreadsheet)

(iii)! General rules to observe and use of draft specific parameters
(iv)! Installation hints
(v) ! Examples of the use of TAT

Note, if you are not using REtool, TAT allows you to obtain as an end result of above
processing an Excel spreadsheet that can be used otherwise (independent of REtool).

1 Methods of producing from the IPCC draft PDF a text
file
To accomplish the first critical step, it is recommended to work first of all with the text
extracting method described below (called b9) for historical reasons) (This is a method,
which, as of this writing, is tested to work well and reliably on the Macintosh platform):

1)!Open the pdf in Acrobat and make sure you have continuous view active (menu
command “View -> Page Display -> Enable Scrolling”)

2)!Select all (menu command “Edit -> Select All”)
3)!Copy into the clipboard (menu command “Edit -> Copy”) — This process may take a

while with large documents; wait until Acrobat is really finished.
4)!Open in TextEdit (standard application under OS X) a new document (menu

command “File -> New”) and make it text only (menu command “Format -> Make
Plain Text”, allow for it and click “OK”)

5)!Paste the large clipboard into the empty new TextEdit document (menu command
“Edit -> Paste”)

6)!Save the document with UTF-8 encoding (menu command “File -> Save” with “File
Format”)

!
The following methods have also been tested, but generally with strongly varying results of
usability:
!

b1)! Using Preview, select all, and then copy paste everything into a text file
b2) ! Using Acrobat “File -> Save As Other… -> More Options -> Text (Accessible)”
b3)! Using Acrobat “File -> Save As Other… -> More Options -> Text (Plain)”
b4)! Using Acrobat “File -> Save As Other… -> More Options -> Rich Text Format”
b5)! Using Acrobat “File -> Save As Other… -> HTML Web Page”
b6)! Using Acrobat “File -> Save As Other… -> Microsoft Word -> Word Document”
b7)! based on b6) Using Word “File -> Save As…” select “Plaint text (.txt)” with options

‘Other encoding: Unicode 6.1 UTF-8’ and check ‘Insert line breaks’ (CR only)

TAT 1.0fc9, 14.Sep.2018

b8)! Using Acrobat “File -> Save As Other… -> Image -> TIFF” and open all tiff files in
Acrobat to save them again as a PDF, OCR, all then copy paste everything into a text
file

b9)! is actually the method described above
b10)!Using Word (original file) “File -> Save As…” select “Plaint text (.txt)” with options

‘Other encoding: Unicode 6.1 UTF-8’ and check ‘Insert line breaks’ (CR only)
b11)!Using Word from Office 2016 to open the pdf and continue with method b6) or b7)

Any of these methods is only recommended if you should encounter difficulties with the
recommended method b9). Note, the recommended method does only work well if religiously
followed. E.g. altering the sequence of the steps 4) and 5) slightly by first pasting and
converting the file to text only after the paste does generally NOT work and may easily result
in corrupted, i.e. truncated data!

2 Processing the data (core of TAT)
It is recommended to always perform following steps:

1) !Use the distributed pdf with method b9) (see above, part (i)) and paste the possibly
large clipboard into a new TextEdit file, save as text only UTF-8. IMPORTANT NOTE:
Do first make the TextEdit file a text only file before you paste the large clipboard.
Otherwise, i.e. if you paste into a rtf TextEdit file, you risk to get only a portion of the
document. Such a portion regularly ends after a table. However, if the receiving
TextEdit file is a plain text file before you paste, you should get the entire document in
one go.

2) !Prepare file ‘fixDraftPars.txt’ and make sure a copy resides in the same folder as where
the result from step 1 resides

3) !Run shell script ‘fixDraft.sh -f <filename>.txt’ (the options may depend on the case and
method used in step 1), consult help of fixDraft.sh accordingly and explanations below)
(*)

4)!Possibly repeat step 3 until all looks ok, which may require some editing of the file
resulting from step 1. Editing is typically required if an author has mistyped the label of
a figure or another item. E.g. ‘Box 1, Figure 1’ is not correct, since the chapter is
missing. Correct would be ‘Box 3.1, Figure 1’, since we talk about Box 1 within Chapter
3. You may do such editing either manually with any text editor such as TextEdit or then
using an additional shell script. I greatly prefer the latter. This consists of an optional file
named ‘fixTypos.sh’, which resides in the same folder where the result from step 1
resides. Repeating step 3 means then you edit ‘fixTypos.sh’ until step 3 results in a
flawless text (for more details on this technique see Examples below).

5) !Open ‘TAT-drafttext.fmp12’ and import the file resulting from steps 3) and 4) (FM script
‘Import draft text...’)

TAT 1.0fc9, 14.Sep.2018

6)! If you do it chapter by chapter, make sure the value global report page number (field
‘First_page_of_draft_core’) is correct before going to the next step

7) !Run first a preparatory FM script and then the actual parsing FM script ‘Parser -
TOC’ (first time Replace, later Append) in ‘TAT-drafttext.fmp12’. The standard
preparatory FM script is ‘Prepare for TOC Parsing’ (but there are others described
below under Examples).

8) !Repeat from steps 3) till 7) as necessary (Append) until the TOC in ‘TAT-
draftTOC.fmp12’ looks good and jumping to the PDF works correctly

9) !Run FM script ‘Export to spreadsheet’ in ‘TAT-draftTOC.fmp12’ to obtain the metadata,
which you can then import into ‘REtool-textlinks.fmp12’ for use with ‘REtool-main’

That’s all folks!

(*) In step 2 I like to use following variant ‘fixDraft.sh -f <filename>.txt ; open <filename>-
OUT.txt’ for immediate checking of the result while iterating between steps 3) and 4).

The following explanations can be easily skipped if you are mostly interested in the basics of
TAT. Skip with your reading to the next part (3) «General rules to observe and use of draft
specific parameters».

On Steps 1,2,3, and 4): TAT is able to process an entire report with front matter (FM),
several chapters, and back matter (BM) (e.g. an appendix with the actual figures) in almost
one go. The recommended method for step 1) is now reliable if done exactly as described in
part (1) and the following considerations are here mentioned only in the unlikely case things
do not work as expected.

First note, resorting to any other technique for step 1) (cf. part (1)) is still possible and a
supported option if something should go badly wrong with the recommended method (in all
these cases use ‘fixDraft.sh -9). However, in my experience any other method will require
considerably more fixing in step 4) until the result is satisfying, which may easily require a
huge amount of work possibly defying the entire exercise to automate the extraction. The
sequence of steps remains basically the same, only parameters of ‘fixDraft.sh’ need to be
adjusted (e.g. do use option -9 if you have NOT used method b9) etc). If the pdf contains no
text, I would suggest to use then first OCR, e.g. within Acrobat, and then proceed by the
recommended method b9) as usual. In such cases, however, following variations of step 3)
may then be helpful as an example for varying step 3):

cat <filename>.txt | fixDraft.sh -d | fixOCRissues.sh | repairLineNos.awk | insertTabDels.awk >
<filename>-OUT.txt ; open <filename>-OUT.txt

Note, in above commands the option -d does suppress the call to insertTabDels.awk by
fixDraft.sh, which you then need to call later yourself (in general best called as the last step).
You may freely experiment with many options for fixDraft.sh -dgnt to suppress further calls to
awk scripts by fixDraft.sh (-g suppresses call to rmFigures.awk, -t that to rmTables.awk, -n
that to markFootnotes.awk) allowing you to alter the sequence by which any of these scripts
is called and possibly call even one of these scripts several times. Alternatively to above

TAT 1.0fc9, 14.Sep.2018

command sequence you could also call fixDraft.sh with option -o (asks ‘fixDraft.sh’ to try to fix
OCR issues) with following command sequence:

!cat <filename>.txt | fixDraft.sh -o > <filename>-OUT.txt ; open <filename>-OUT.txt

Experimenting with the sequence and the number of times a fixing script is called may help in
difficult cases. Remember just the following when using fixDraft.sh:

-z!This option should always be used if line numbers do not restart with 1 at every page
-9!This option should always be used if you have NOT used method b9)
-i! This option should be used with caution and is known to give questionable results

(resort to it only if any other method that can capture page footers and headers really
should be impossible)

-s!This option is normally not needed and mostly helps to debug particular difficult cases in
combination with option -z

Then you need to be aware also of the fact that the parameters as used by the awk scripts
are not read from the file ‘fixDraftPars.txt’. This is done by ‘fixDraft.sh’ only, which then
adjusts the calls to the awk scripts accordingly (one of the bigger advantages of ‘fixDraft.sh’).
If you need to deviate from the ‘fixDraft.sh’ default sequence of calling awk scripts, the results
may be suboptimal unless you really use consistently the proper parameters. E.g.
insertTabDels.awk with option -z needs be called with parameter -v maxLineNo=32767 (or
any large integer number larger than the highest line number in the report). The call to
insertTabDels.awk must then be as this

cat <filename>.txt | fixDraft.sh -d | fixOCRissues.sh | repairLineNos.awk | insertTabDels.awk -v
maxLineNo=32767 > <filename>-OUT.txt ; open <filename>-OUT.txt

Note also, all default parameters used by the awk scripts are those compatible with a FOD,
e.g. FOD of IPCC SR1.5. Otherwise additional parameters may need to be added. E.g. when
calling insertTabDels.awk an additional parameters such as the headerToken (-v
footerToken=“Second Order Draft Chapter”) is best added. In difficult cases you may need to
open the awk scripts to see which parameters can be overwritten by the callee and adjust the
call accordingly. Remember, while the sequence by which you call awk scripts is quite open
to experimentation and may be well what you need in difficult cases, consistency among all
parameters as used by the callee is most important for optimal results. Otherwise you can be
easily mislead to misjudge the relevance of a change in the calling sequence of awk scripts
or their capability to help you in general.

On Steps 5,6,7, and 8): TAT offers also the big advantage of exploiting redundancy. Any
Table of Contents (TOC) information can be used to double-check. E.g. if the front matter of a
report contains a TOC, this can be processed also, even using method b10) in the most
straightforward manner and then proceed with steps 5) on to feed at least some of the TOC
data into ‘TAT-draftTOC.fmp12’’s table ‘Table_of_Contents’ (flag in field
‘Tlob_Pars::Text_is_only_TOC’ from ‘TAT-drafttext.fmp12’ set to TRUE). Of course line
numbers are then always missing. But, iterative refinement of the TOC data is then possible
while executing FM script ‘Parser - TOC’ from step 7) always in Append mode using different
sources such as the actual chapter (flag in field ‘Tlob_Pars::Text_is_only_TOC’ from ‘TAT-
drafttext.fmp12’ set to FALSE) in addition to a mere TOC input.

TAT 1.0fc9, 14.Sep.2018

! Such an approach allows also to detect inconsistencies, e.g. I detected that the TOC
listed a subsection that was actually not present in the ZOD text of chapter 3 from IPCC
SR1.5. E.g. the heading «3.2.4.1 Identifying hot spots» is in report wide TOC in the front
matter (FM), but is missing in the chapter itself. Processing a mere TOC does not necessarily
require to run the full script ‘fixDraft.sh’. It may suffice to execute following commands
(example of report wide TOC in the FM of the ZOD SR1.5 with a couple of minor edits
manually done on the initial text file ‘ZOD FM-b1.txt’ as resulting from method b1):

!cat "ZOD FM-b1-ES3 edited-FM deleted.txt" | massageDraft.sh | insertTabDels.awk > "ZOD FM-b1-ES3
edited-FM deleted-OUT.txt"

Finally note also that several FileMaker scripts in ‘TAT-drafttext.fmp12’ can be executed also
in a modular fashion, e.g. ‘Renumber pages’ or ‘Identify front (FM) and back (BM) matter’.
They generally produce a report of their action in field ‘Glob_Pars::LogReport’). Alerts are
only issued if a warning is inevitable or otherwise clear inconsistencies threatening the quality
of the final results have become obvious. A handy FileMaker script “Toggle layouts 'Text' and
'Parameters’” (Cmd^0) allows to quickly switch between the text view (layout ‘Text’) and the
parameter settings (layout ‘Parameters’). Since Step 8) can be repeated in mode “Append”
as many times you wish, the quality of the result in TAT-draftTOC can be enhanced stepwise
easily and conveniently, possibly even going back to previous steps such as Step 4) by
editing ‘fixTypos.sh’. In my experience it is actually often the case that you notice only in the
final TOC as shown in TAT-draftTOC that some chapters were mistyped by the authors and
require fixing before the heading can really be recognized by the parsing as done in Step 7).
Without the fix an important chapter or section heading or figure may simply be missing.
Similarly correctness of page or line numbers may need testing by trying to jump to the
wanted PDF’s locations. The latter may be particularly relevant if you needed to resort to
OCR in Step 1), which may easily have confounded page or line numbers (e.g. ’25’ as ‘2S’
resulting in a wrong or even malformed page number).

3 General rules to observe and use of draft specific
parameters
Above procedures can be modified as needs arise, yet following few rules are best observed
always:

A)!Favour any method for Step 1) that allows to preserve page footers and page headers.
The critical pagination as done in Step 5) works otherwise not reliable. This means only
methods b1) or b9) should be used for complex texts (excluding methods b2), b3), b4),
b5) and b7), assuming b10 can never be used anyway (unless line numbers would not
matter, but which would defy the entire purpose of TAT except for simple table of
content analysis, see Example 3 below).

B)!Every draft comes with slightly different formatting, notably different page headers and
footers. TAT offers a convenient technique to provide the draft specific tokens that are
essential and critical for TAT to perform its tasks. It is recommended to specify the draft
specific parameters in a simple text file, which is always named ‘fixDraftPars.txt’. The
following example of this file is for the IPCC SR1.5 ZOD draft:

TAT 1.0fc9, 14.Sep.2018

!

 ! This file is automatically used by ‘fixDraft.sh’ (see Step 3) above, if present at all.
Currently this file needs to be setup manually with a text editor. Note, spelling is critical
and fundamental, to have an Oxford comma or not, makes all the difference, e.g. the
sentence expected here to be written in each page footer, i.e. “Do Not Cite, Quote or
Distribute” vs. “Do Not Cite, Quote, or Distribute”. Depending on the draft, TAT fails most
likely entirely or succeeds, depending whether the Oxford comma is actually present in
the original PDF or not! The string value that is assigned to the variable
FOOTERTOKEN (footer token) needs to precisely specify what is actually written in the
original PDF, here i.e. “Do Not Cite, Quote or Distribute”. Here a snapshot from the
original PDF:

!
 ! A comment on the header matching above ‘fixDraftPars.txt’. This is a header from the

original PDF:
!
!

!

! The original PDF uses in the header not “Zero Order Draft”, but “Internal Draft” followed
by the word “Chapter”. Yet the value assigned to parameter HEADERTOKEN (header
token) in above example is “Zero Order Draft Chapter”. Why? First note, most text
extracting methods from Step 1) (see also part (2)) insert a single blank between “Draft”

TAT 1.0fc9, 14.Sep.2018

and “Chapter”. Secondly, for technical simplicity reasons TAT prefers to have always a
three word phrase in headers such as “Zero Order Draft”, “First Order Draft”, and
“Second Order Draft” etc. TAT (as well as all of the REtool software) also uses
consistently the abbreviations ZOD, FOD, SOD, and FGD throughout. Therefore TAT
translates any “Internal Draft Chapter” string into “Zero Order Draft Chapter” (actually
done by shell script ‘massageDraft.sh’ as also always called by ‘fixDraft.sh’). Therefore
the value assigned to parameter HEADERTOKEN in above example is “Zero Order
Draft Chapter” and is needed to successfully process the IPCC SR1.5 ZOD PDF.
Similar arguments apply for the parameter HEADERTOKENATEND (header token at
end), which must exactly match what TAT sees, here exactly what can be found at the
end of each page header of the original PDF. Similarly TAT may need to be informed
what can be found at the end of each footer of every page (parameter
FOOTERTOKENATEND, footer token at end). Note the latter does on purpose not use
the chapter specific number “29” or TAT would only work for chapter 1 of SR1.5 ZOD
and would fail for every other chapter or draft where the chapter 1 has another total
number of pages. While in above example parameter TOTALPAGES (total pages) does
allow to assign the precise value, this value matters only in cases where TAT is asked to
regenerate footers lost by a text extracting technique such as method b2) etc.
Otherwise TAT ignores the highly variable number “29” and recognizes or fixes a footer
only by looking for the string tokens as assigned to the parameters FOOTERTOKEN
and FOOTERTOKENATEND. Consequently, the parameter TOTALPAGES is optional
and could be missing from above file, yet TAT would still successfully process the SR1.5
ZOD PDF.

! Finally note also, the pages in the front matter of the SR1.5 ZOD are not meant here.
On the contrary. Those are different and this fact allows TAT to differentiate between
front matter and the actual core of the draft where the chapters are. Here the
aforementioned page header illustrating this difference:

!
!

!

! Note, the words “Chapter 1” vs. “Extended Outline” make all the difference, a difference
that is critical for TAT to succeed and work well throughout.

! Please watch out for the following caveats also:

(i) ! ‘fixDraftPars.txt’ must be a syntactically correct text file that can be successfully
sourced (by Unix shell script ‘fixDraft.sh’). This requires in particular to not
change any of the variable names used. Most importantly, it also requires to
always enclose any text containing a blank within double quotes as shown
above.

(ii)! There exist currently no techniques to make sure the parameters as used in this
text file are identical to those used in TAT-drafttext.fmp12 table ‘Glob_Pars’.
These parameters need to be consistently defined and therefore need typically

TAT 1.0fc9, 14.Sep.2018

to be checked and possibly adjusted when one switches from a draft to another,
e.g. from ZOD to FOD etc.

(iii)! Note, if any of the parameters shown above are not contained in this file, default
values are used by ‘fixDraft.sh’ and/or the called awk scripts (see e.g.
TOTALPAGES as discussed above). Most defaults used by TAT are those
needed for the SR1.5 FOD, which could be processed without any
‘fixDraftPars.txt’ file at all.

(iv)! Parameters can also be defined in any sequence, since above files are simply
sourced by ‘fixDraft.sh’ if available before any values are used.

 ! Following examples show how to change file ‘fixDraftPars.txt’ for IPCC SR1.5
SPM FOD

! or IPCC SROCC ZOD Chapter 1

C)!If a report wide front matter (FM) is present, e.g. as with SR1.5 ZOD, then it is
recommended to not use fixDraft.sh -c to allow ‘REtool-textdraft.fmp12’ to correctly
determine the number of pages in the FM. This is particularly important in cases where
no reliable headers and footers are present in the original input file, e.g. methods b1) or
b7). Otherwise subsequent paginations in ‘REtool-textdraft.fmp12’ will not succeed to
assign correct page numbers. On the other hand, since the main purpose of TAT is to
reconstruct a detailed TOC (Table Of Content), the original TOC is not really needed,
since mostly redundant (but see Example 4 below).

TAT 1.0fc9, 14.Sep.2018

D)!For fixDraft.sh -i to succeed always, line numbers need to restart within each page and
every page should start with line number 1. If that is not the case, then a method needs
to be used that preserves page headers and footers in a reliable manner (see rule A)

E)!Page numbers are critical, notably if they are to refer to a single global report pdf (e.g.
SR1.5 ZOD) for the jumping to locations to work always properly. If working piecewise,
e.g. chapter by chapter, you need to understand the following:

(i)! The chapter page numbers are assigned automatically in ‘REtool-
textdraft.fmp12’ (field ‘Text::PageNo’) right after the import (FM script
‘Renumber pages’). This assumes by default each chapter to start from page 1.

(ii)! Yet, report wide global pages are assigned only in ‘REtool-textTOC.fmp12’
during the execution of FM script ‘Parser - TOC’ in ‘REtool-textdraft.fmp12’.
They use an offset from all previous material (field
‘Glob_Pars::First_page_of_draft_core’ in ‘REtool-textdraft.fmp12’). In such a
case make sure you either work one chapter after the other and determine the
values of that parameter as obtained from processing the previous chapter or
you look it up manually in the original pdf. Such hassle can be avoided by
processing all chapters in one go, the recommended method.

4 Installation Hints
For TAT to work, you need only to copy a few files to your system (exception is FileMaker,
which is needed as well for a fully functional TAT, see below).

4a) Unix dependent part

The following shell and awk scripts are needed as released within the REtool package ‘Text
Analysis Tools’ (TAT). They are best copied or moved to a folder or directory 2 called

	bin/TAT

in your home directory (if the folder does not yet exist, please create it first) (note this makes
no sense under any non Unix system):

	fixb9-a.awk
	fixb9-b.awk
	fixb9-c.awk
	fixb9-d.awk
	fixb9-e.awk
	fixFooters.awk
	fixHeaders.awk
	fixMarkedFootnotes.awk
	fixOCRissues.sh 3
	insertPageBreaks.awk
	insertTabDels.awk

TAT 1.0fc9, 14.Sep.2018

2 Unix terminology

3 helpful only if using method b8 or OCR in combination with method b9

	markFootnotes.awk
massageDraft.sh
	repairLineNos.awk 4
	rmDMHeaders.awk
	rmFigures.awk
	rmTables.awk
	rmTOC.awk
	splitLineNoRows.awk

and the key to all above scripts, the shell script:

	fixDraft.sh

For TAT to be fully functional on your system It is critical that the so-called environmental
variable $PATH contains the directory ‘bin/TAT’. The following steps need to be done only
once, i.e. before very first use of TAT.

On the Macintosh platform test this by opening application Terminal 5, which you find within
your system wide Applications folder. There type

!
echo $PATH

followed by RETURN (to issue the actual command). The result may be a string similar to the
following:

.:./bin:/Users/<yourUserName>/bin:

This is a list of directories, separated from each other by a colon ‘:’ (without any blanks), in
which Unix command line tools are searched. For TAT to work it is very critical that the ‘bin/
TAT’ directory into which you have copied above shell and awk scripts is known to the system
via this environment variable $PATH. Otherwise TAT will not work. First, make sure that the
‘bin/TAT’ directory is listed as shown in the example above, where the path

/Users/<yourUserName>/bin

with <yourUserName> replaced by your actual User Name points to the wanted ‘bin’ directory
(Note, <yourUserName> is the name your home directory).6 If above checking does show
that the ‘bin’ directory is NOT yet contained in the $PATH environment variable – typically the
case at the very first installation of TAT – you need to fix this. On the Macintosh platform this
requires following two simple steps:

1) !Open the so-called user profile, this is a normally invisible file named .profile. Open
this from the Terminal with following command
!! open .profile

The file may contain already a definition for the $PATH variable. A safe technique is
then to leave that definition as is and to merely add the definition ~/bin/TAT after the
first definition of PATH:! !

TAT 1.0fc9, 14.Sep.2018

4 needed only if using method b8 or OCR in combination with method b9

5 available in the Utilities folder of your system, i.e. directory /Applications/Utilities

6 Unix allows to abbreviate your home directory by a simple tilde. Thus ‘/Users/<yourUserName>/bin/TAT’ is
equivalent to ‘~/bin/TAT’.

		 export PATH="$PATH:~/bin/TAT"

! This will append to the existing $PATH the wanted custom path /Users/
<yourUserName>/bin/TAT (here given as ~/bin/TAT) and will then export that new
environment PATH variable to the Unix environment as used by the Terminal and TAT.
7Once you have added above second line, do save and close the file.

! If you get the response that the file does not exist, you need first to create it. Launch

TextEdit, either the usual way or why not e.g. with following command executed from
the Terminal window:
!! open -a TextEdit

! Once in TextEdit use menu command “File -> New” and save the file as text only to your
home directory with ASCII encoding:

! !

! Then click button ‘Use “.”’ in the subsequent warning alert, because you want to
provide a system reserved file:

! !

! Finally enter the wanted PATH definition needed by TAT into this file as shown below.
The new file should then look similar to this:

! !

TAT 1.0fc9, 14.Sep.2018

7 If you use also REtool you should also make the path ~/bin known to your system. The line ‘export
PATH="$PATH:~/bin/TAT"’ should then be written as ‘export PATH="$PATH:~/bin:~/bin/TAT"’ (without single
quotes of course).

2) !Relaunch application Terminal8 and test again by executing the command echo $PATH.
Repeat the two steps until you can see in $PATH the wanted path. Test whether all
works by entering e.g. following command requesting fixDraft.sh to provide its help:

	! fixDraft.sh -?

! You should get the help from TAT utility fixDraft.sh similar to the following:

!

4b) FileMaker dependent part

For the processing relying on the data base files ‘TAT-drafttext.fmp12’ and ‘TAT-
draftTOC.fmp12’ (Steps 5) .. 9)), simply copy those files into any working folder you like.
However, I recommend to use another folder than the one where you prepare the input files
for ‘TAT-drafttext’ as described under Steps 1) to 4). This is because you may need for every
draft text you wish to process a separate copy of ‘fixDraftPars.txt’, ‘fixTypos.sh’. I use on my
system a TAT home folder, here for the IPCC SR1.5:

TAT 1.0fc9, 14.Sep.2018

8 This is quite important to make sure that your terminal session does update the environment variable $PATH.
A simple way to do that is to quit and relaunch the application Terminal.

!

Within the ZOD folder I then have working folders for individual chapters, e.g. for SR1.5 FOD
Chapter 1:

!

Finally you need as of this writing also FileMaker Pro version 14 or later (Note, all testing
described as of this writing was done with FileMaker Pro Advanced v14.0.6 under OS X
10.9.5 (Mavericks)). I will perhaps make versions available that will NOT depend on having a
FileMaker Pro license available. Ask me if you are interested.

No further installation steps are needed in addition to what was described above.

TAT 1.0fc9, 14.Sep.2018

5 Examples
The following examples represent tutorials, which start with a simple case, introducing with
each example more advanced techniques.

All examples were done using Acrobat XI (11.0.23) and TextEdit 1.9 (310) on a Macintosh
under OS X 10.9.5 (Mavericks). They should work with other Software versions on any other
Macintosh system. Some parts of TAT should work under Linux, but nothing was tested. TAT
does not work under Windows, since Windows is not Unix based. Yet, the REtool FileMaker
data bases would work also under Windows, given the needed input files are prepared on a
Unix system. Input files are available from folders nearby. The expected output files are also
provided for comparison reasons.

Example 1 - Chapter 1 of SR1.5 ZOD (simple example)

Example 1 is for IPCC SR1.5 ZOD Chapter 1 extracted from the original large ZOD.pdf
(single file except for figures, which came extra), i.e. using Acrobat to delete all other pages
from the large ZOD.pdf than those of Chapter 1. This step is of course not really needed, but
was done for the following example for easier repetition (nearby provided). Alternatively
select in step 1 only chapter 1.

Step 1): Method b9) extracts the wanted text in one go. Paste the clipboard obtained in
Acrobat into a new TextEdit window converted to text before the paste and save all with
UTF-8 encoding into file:

! "ZOD Ch1-b9.txt" 9

Step 2): Add file ‘fixDraftPars.txt’ into the same directory where above file resides. Ex.:

!

Most parameters should be self-explanatory. Note however, the parameter TOTALPAGES,
being the total number of pages of the current chapter, does not matter when using method
b9). It only matters for option -i for shell script fixDraft.sh for a method such as b7) where no
headers and footers are generated and need to be reconstructed. On the other hand, the
value is merely cosmetic and should not affect the workings of TAT in any way. Note also the

TAT 1.0fc9, 14.Sep.2018

9 The name is to be read without the quotes

parameter DMMARKER, which stands for Document Manager Marker. It does not matter for
the ZOD of SR1.5, but is needed for other reports such as the ZOD of the SROCC. The
meaning of parameter REMOVETABFIGFROMNR will be explained below under Example 4.

Step 3):

Process ‘ZOD Ch1-b9.txt’ with following command (Step 3)

!cat "ZOD Ch1-b9.txt" | fixDraft.sh -z > ZOD Ch1-b9-OUT.tx ; open "ZOD Ch1-b9-OUT.txt"

Step 4):

The inspection of the result file from previous step

	open "ZOD Ch1-b9-OUT.txt"

should show that all looks fine (no editing of input file and repeating of step 3 necessary).

Step 5): Import the resulting file ‘ZOD Ch1-b9-OUT.txt’ into ‘TAT-drafttext.fmp12’ by executing
FileMaker script (FM script) ‘Import draft text...’ (Cmd^1). When asked allow for replacing all
data. You are first shown the result from the importing and subsequent processing, which
should look similar to this:

!

TAT 1.0fc9, 14.Sep.2018

Click button «Continue» (or «Go to ‘Text’») and in layout ‘Text’ you can see the entire draft
text as imported:

!

Step 6): The parameters (layout ‘Parameters’ in ‘TAT-drafttext.fmp12’) currently in use should
look as this:

TAT 1.0fc9, 14.Sep.2018

!

The importing should have updated some information such as ‘First_page_of_draft_core’,
‘First_chapter_in_data_base’, and ‘Last_chapter_in_data_base’ automatically for you. Should
the information look differently, e.g. ‘First_chapter_in_data_base’ is not 1, some tokens may
be not correctly defined. The following parameters matter for this and subsequent
processing:

!

The following describes the purpose of these values and what to do about them if something
does not work as expected. Skip this text (indented) if all seems fine and you wish to proceed
quickly. Continue reading at the end of this step.

If ‘First_page_of_draft_core’ is not 1, then check the relevant tokens in parameters
‘Header_token_in_FM’, ‘Footer_token_not_FM’, and ‘Header_token’. They are used to
determine the possible presence of the so-called front matter (FM), containing perhaps
a table of content or some preamble text. Note, above values for these parameters

TAT 1.0fc9, 14.Sep.2018

mean that page headers from chapters, i.e. where the core of the text starts, are
expected all to contain also the word ‘Chapter’ (in the given sequence), while headers in
the front matter are expected to contain only the phrase ‘Zero Order Draft’. Thanks to
these parameter values the FM script ‘Clean import and renumber pages’ – which is
called also by FM script ‘Import draft text...’ – should be able to determine front matter
and determine that the first chapter starts at page 1 (‘First_page_of_draft_core’ shows
value 1). Only if the values of these token parameters are correct will the execution of
FM script ‘Identify front (FM) and back (BM) matter’ give you the correct value of
parameter ‘First_page_of_draft_core’. If all is correct you should get the value 1 for
‘First_page_of_draft_core’ and by the way also the values for ‘Parse_from_RecNo’
exactly as shown.

If ‘First_page_of_draft_core’ is correct, but the chapter number is not correctly given in
‘First_chapter_in_data_base’, and ‘Last_chapter_in_data_base’, then some other
parameters may be wrongly set and do not match the actual text. Let us look at a
header from the original PDF:

Note, it starts with the phrase ‘Internal Draft’, yet field ‘Header_token’ uses the phrase
‘Zero Order Draft Chapter’. How come? First, it is the use of fixDraft.sh in Step 3) which
has changed ‘Internal Draft’ to ‘Zero Order Draft’ (precisely it was script
‘massageDraft.sh’). The reason is a practical one related to parameter
‘Word_pos_of_chapter_in_header’ and explained just below. But note, also the entire
terminology of REtool sticks consistently to following terms: ‘Zero Order Draft’ (ZOD),
‘First Order Draft’ (FOD), ‘Second Order Draft’ (SOD), and ‘Final Government
Draft’ (FGD). Thus ‘Header_token_in_FM’ and ‘Header_token’ are correctly set to ‘Zero
Order Draft’ and ‘Zero Order Draft Chapter’, respectively.

If those token values are all set as they should, there is still another possibility why
parameters ‘First_chapter_in_data_base’ and ‘Last_chapter_in_data_base’ may contain
wrong or even bad values. You need to make sure all values of the other parameters
shown above to the right are exactly those as shown.

First note, the chapter number is typically retrieved from what is found in a header line
(containing the token ‘Header_token’) at word position
‘Word_pos_of_chapter_in_header’. The value of 5 for the latter parameter means in a
header line as this one

!

the chapter number is to be found in the 5th word. Having either ‘Zero Order Draft
Chapter’ or ‘First Order Draft Chapter’ or ‘Second Order Draft Chapter’ or ‘Final
Government Draft Chapter’ does not affect that value, it is always 5. Convenient, isn’t it?
If that parameter value is set to 0, this means there is no chapter information to be
found in headers. You could try to use this value, since not all is lost as the following
considerations show.

‘Word_pos_of_pageinfo_in_footer’ may also matter here and should be set correctly for all
to work flawlessly. Its value 4 means that in a footer as this one

TAT 1.0fc9, 14.Sep.2018

!
!
the page information, here 1-13, is to be found at the 4th word position. This value could

also be 12, since the same information is redundantly contained twice in above footer. If
you compare this to the original pdf, the footer line looks like this

The line does not start with phrase ‘Do Not Cite, Quote or Distribute’, but with ‘Begin of
page 1-13 - - - -‘. Why? The previous Step 3) has inserted that additional text. Since
method b9) from Step 1) has been used, the footer line is actually placed right next
after the header of every page, meaning that the footer is now actually at the begin of
the page 13, not at its bottom. Other methods than method b9) used in Step 1) work
differently and fixDraft.sh changes this accordingly, so that you are always well informed
to which page and chapter the footer belongs and where in the text it sits.

Note, this page information contains not only the page number, here 13, but also the
chapter information, here chapter 1, once more, redundantly to the header. That is the
reason why you could have the parameter ‘Word_pos_of_chapter_in_header’ set to 0,
and still be able to determine correctly the first and last chapter in your data. Only if you
would set both these parameters to 0 would that no longer work. Note, then you would
also set the parameter ‘Headers_mark_page_breaks’ to 0 (false), since then only line
numbers could be used to determine page breaks.

Finally, this all means also that the parameter ‘Footer_token_is_at_footer_begin’ must be
set to 0 (false). The phrase ‘Do Not Cite, Quote or Distribute’ as given in field
‘Footer_token’ is not at the begin of the footer line. Only if you would have used in Step
3) for script 'fixDraft.sh' the option -d, then that value would have to be adjusted
accordingly and set to 1 (true). Only then the footer lines would look exactly as in the
original PDF. Yet, know, doing that is not advisable. It would interfere with the import
process (FM script ‘Import draft text…’). The line numbers would be concatenated with
all of the line texts, all then ending up in the wrong field, i.e. in the 2nd column (cf.
layout ‘Text’). Normally that field should hold only line numbers. Thus, in normal use of
‘fixDraft.sh’, the option -d should never be used.

Assuming the chapter number and first page was identified fine, let us continue. Note, you
can conveniently toggle back and forth between the draft text (layout ‘Text’) and the
parameters (layout ‘Parameters’). Use FM script “Toggle layouts 'Text' and
‘Parameters’” (Cmd^0) or the buttons provided. Before going to the next step, however, make
sure all is prepared exactly as it should, notably the field ‘First_page_of_draft_core’ is now
important. You have to set its value to 17. Why? This is because we intend to use with REtool
the original ZOD.pdf as distributed by TSU. Perhaps confirm this value of 17 by looking at the
original large ZOD.pdf (provided nearby with this release). The 17th page, labelled 1-1, is the
one where chapter 1 really begins. At the end of this step, your parameters should then look
like this

TAT 1.0fc9, 14.Sep.2018

!

Step 7): Select first the records to be parsed, which means basically excluding from the
current set all front and back matter. To accomplish this simply execute FM script ‘Prepare for
TOC Parsing’. Not much will happen, except that some lines are no longer shown, e.g. page
headers and footers should not show. In layout ‘Text’ you should see something similar to
this:

!

Then execute FM script ‘Parser - TOC’ to parse all the data in the current found set. When
you are asked to append or replace the data, best answer by replace, since this is the first
example. This extracts the wanted meta data and exports them to the data base file ‘TAT-
draftTOC.fmp12’ where they can be looked at as a detailed Table of Content (TOC) (layout
‘Table_of_Contents’) not only containing page numbers, but also line numbers for every item
listed.

TAT 1.0fc9, 14.Sep.2018

The Log entries in ‘TAT-drafttext.fmp12’ (layout ‘Results from last processing’) from Steps 5)
to 7) have created a log, which should look similar to this:

!

If some elements, say figures would be missing or no list of reference section could be
detected, then this may depend on the values for other parameters (not explained above).
For this example to work fully, the following parameter values are to be used:

!

Note, the hash mark stands for a number. So a figure such as figure 3 in chapter 1 is
expected to have a caption starting with the phrase ‘Figure 1.3: ’ (note also the blank at the
end after the colon). If authors have mistyped this, the parsing would not have succeed for
that figure and it would be missing from the generated table of contents. Note also, the colon
is quite relevant. Why? The entire chapter text should contain at least one reference to the
figure and such a reference may even end up at the begin of a line. Parsing would then fail,
since it could no longer correctly distinguish between a mere reference and the actual figure
caption. Yet the location of the figure caption is the only piece of information the parser wants
to extract, i.e. the page and line number where the figure caption begins.

TAT 1.0fc9, 14.Sep.2018

If the list of reference section is not found, perhaps there is a typo or another convention
followed. E.g. if authors would have written ‘List of References’, that section heading would
be missed, since parameter value ‘Refs_token_in_text’ set to ‘References’ means a different
thing. It means that the heading of that section must start only with ‘References’, nothing
else. Otherwise it will not be detected by the TOC parser. However, in this example the value
shown above is what the authors wrote. If you wish, you can experiment with that. E.g.
change the parameter value to ‘List of References’ and repeat Step 7) (Cmd^6 and Cmd^7,
Append). The log should say 0 refs sections:

!

You can change the text of line 1047 also to ‘List of References’ and repeat Step 7) (Cmd^6
and Cmd^7, Append). Then the log should say again that 1 refs section was found. Note,
‘TAT-draftTOC.fmp12’ will obtain another entry for the reference section, which should read
‘List of References (Chapter1)’. Thus do it a last time to ensure all is back to what it was and
repeat Step 7) (Cmd^6 and Cmd^7) to make sure the title used by ‘TAT-draftTOC.fmp12’ is
the correct one ‘References (Chapter1)’.

Step 8) The final result from all this in ‘TAT-draftTOC.fmp12’ should look similar to this:

TAT 1.0fc9, 14.Sep.2018

!

To test the correctness of all you can click on the beige button on the left of the above
selected heading 1.2.4. This should get you to the 22nd page of the ZOD.pdf, i.e. page 1-6,
where line 287 can be found, if you have that pdf open in Skim. Perhaps check this with

TAT 1.0fc9, 14.Sep.2018

some other items listed, whichever you want. Note, the parsing for the Table Of Content
(TOC) meta data as done during step 7, i.e. executing FM script ‘Parser -TOC’, creates
additional entries, which you will not find in an ordinary TOC. Look for an entry ‘End Chapter
1’ (Index ‘End Ch 1’). With it you can jump to the end of the chapter 1. Similarly this step
would also create entries for footnotes, e.g. ‘fn 4.1’, if present in the original chapter etc. (not
the case for the chapter used in this example, but see examples below).

The inspection results in no obvious flaw in the meta data and all seems fine.

Step 9): Finally, export from ‘TAT-draftTOC.fmp12’ the wanted spreadsheet using the
dedicated FM script ‘Export to spreadsheet’ (Cmd^1). The nearby folder ‘Example output
files’ contains the exported spreadsheet.

!

Example 2 - Ch3 SR1.5 ZOD (fixing typos)

Example 2 is for IPCC SR1.5 ZOD Chapter 3 extracted from the original large ZOD.pdf
(single file except for figures, which came extra), i.e. using to delete all other pages than
those of Chapter 3. This is not really needed, but was done for this example (file nearby).
This example is slightly more complex than the previous example, since some typos by the
authors prevent a processing as straightforward as in the previous example.

Step 1): Method b9) does not extract the wanted text in one go as in Example 1 unless you
make sure the receiving text file in TextEdit is already a text file before you paste the
clipboard as you copied it from Acrobat. Otherwise the paste process from the clipboard
aborts prematurely, here after having encountered Table 3.1 on page 3-11. Note, TextEdit as
used in this example fails to display an alert or other error message that the clipboard was
not fully copied. You may need to check manually that the entire chapter was copied by
inspecting its end. If you follow exactly the instructions as given above, all should be fine and
you can save all of chapter 3 with UTF-8 encoding to following text file:

	"ZOD Ch3-b9.txt"

Step 2): You can use the same file as for Example 1. Note, as explained above under
Example 1, the parameter TOTALPAGES does not matter. Thus, there is no need to adjust
this value to the correct value of 88 pages.

Step 3): Process ‘ZOD Ch3-b9.txt’ with following command (first attempt at Step 3)

!cat "ZOD Ch3-b9.txt" | fixDraft.sh -z > a.txt ; open a.txt

Step 4): The inspection shows file ‘ZOD Ch3-b9.txt” needs editing. See after lines 2343. It
looks similar to this:

TAT 1.0fc9, 14.Sep.2018

!

These lines are not numbered and make little sense. They are so-called extra table lines,
which should have been discarded. Normally fixDraft.sh does manage to remove such lines
(unless you would have used option -t for not removing such extra lines for tables, and
similarly option -g for graphs). Why did it fail? The reason is that the authors of chapter 3
have not properly labelled on line 2342 the ‘Box 3, Table 1’. The correct format would have
been ‘Box 3.3, Table 1’ (note the chapter number is missing in ‘Box 3’, it is ‘Box 3.3’, the third
box in chapter 3). As a consequence fixDraft.sh has failed to recognize the table and left
there everything as is (except for line numbers where they could be found). To also remove
above extra lines only disturbing later processing you need to correct for that typo of the
authors by following edit:

! ‘Box 3, Table 1: ’ -> ! ‘Box 3.3, Table 1: ’

Note, the edit has to be done where the colon is, not in the line ‘[INSERT Box 3, Table 1
HERE]’. You can do the edit there as well, but it does not matter for TAT. This is because TAT
detects a table, figure, box, FAQ caption only if it has a colon right after the number of the
item. Actually, screening the chapter’s PDF systematically for such typos, there is a similar
typo present in the chapter on line 2108, which also needs fixing:

! ‘Box 1, Figure 1: ’ -> ! ‘Box 3.1, Figure 1: ’

Store both edits in file

! "ZOD Ch3-b9-edited.txt"

TAT 1.0fc9, 14.Sep.2018

Then reprocess ‘ZOD Ch3-b9-edited.txt’ with following command (Repeat Step 3)

!cat "ZOD Ch3-b9-edited.txt" | fixDraft.sh -z > "ZOD Ch3-b9-edited-OUT.txt"

The result, i.e. file

! "ZOD Ch3-b9-edited-OUT.txt"

looks now very good and you can see that the extra table lines have been removed by
fixDraft.sh:

!

Compare how readable the file ‘ZOD Ch3-b9-edited-OUT.txt’ is in contrast to the original file
‘ZOD Ch3-b9-edited.txt’, which resembles only garbled up data at first glance. Here a
comparison:

Before (input to fixDraft.sh -z):

TAT 1.0fc9, 14.Sep.2018

!

After (output from fixDraft.sh -z):
!

Step 5): Import the resulting file ‘ZOD Ch3-b9-edited-OUT.txt’ into ‘TAT-drafttext.fmp12’ using
the same parameters as you used in example 1. Use the FM script ‘Import draft
text…” (Cmd^1) and select the file. When asked allow for replacing all data. Note, this does

TAT 1.0fc9, 14.Sep.2018

not delete any TOC data you might already have in the file ‘TAT-draftTOC.fmp12’. This
deletes only the draft text as contained in ‘TAT-drafttext.fmp12’ layout ‘Text’. Since you
normally do not edit the draft text and can easily reimport data from any files as have resulted
from Steps 1) till 3), there is no risk of losing valuable data. The text of chapter 1 of the IPCC
SR1.5 ZOD should now be in the FM data base ‘TAT-drafttext.fmp12’, visible in default layout
‘Text’. The parameter (layout ‘Parameters’ in ‘TAT-drafttext.fmp12’) should look as this:

!

Step 6) Set the field ‘First_page_of_draft_core” to the correct page number in the original
pdf, i.e. page 86, as chapter 3 begins on that page in the large, original ZOD.pdf.

Step 7): Then perform the actual parsing and export the TOC meta data from chapter 3 to
‘TAT-draftTOC.fmp12’. Accomplish this by first executing as in the previous example FM
script ‘Prepare for TOC Parsing’ (Cmd^6) and then ‘Parser - TOC’ (Cmd^7) by appending the
data by clicking on button ‘Append’:

!

TAT 1.0fc9, 14.Sep.2018

Append would be meaningful and necessary if you wish to keep the data added from
previous Example 1, which has added the TOC meta data from chapter 1. As a result from
appending you have the TOC meta data from both chapters 1 and 3. You see that TAT allows
you to accumulate the TOC meta data and work iteratively.

The report (log) of all processing from Step 5) till this Step 7) should look similar to this:

!

Step 8): The results should be fine, including Box 3.3, Table 1. Check it out.

!

Step 9): Finally, you can export from ‘TAT-draftTOC.fmp12’ the wanted spreadsheet using the
dedicated FM script ‘Export to spreadsheet’ (Cmd^1). That spreadsheet is then ready to be
imported into the main REtool using in file ‘REtool-textlinks.fmp12’ the FM script ‘Import TOC
from spreadsheet’.

!

TAT 1.0fc9, 14.Sep.2018

Example 3 - Processing Table of Content of Front Matter SR1.5 ZOD

Example 3 is for IPCC SR1.5 ZOD the report wide table of contents (TOC) contained in the
so called front matter (FM). The procedure is basically the same as the one given for
Example 1 and consists of following slight variations:

Step 1): Use e.g. method b1) to obtain the first text file, but if works also with method b10:

! “ZOD FM-b1.txt”

Step 2): As for Example 1.

Steps 3 and 4):

Delete the redundant content of the first page (selected text), which does only disturb the
analysis of the TOC:

TAT 1.0fc9, 14.Sep.2018

!

Then execute command:

!cat "ZOD FM-b1-FM deleted.txt" | massageDraft.sh | insertTabDels.awk > "ZOD FM-b1-FM deleted-
OUT.txt"

to obtain the wanted file

! ‘ZOD FM-b1-FM deleted-OUT.txt’

which should look similar to this:

TAT 1.0fc9, 14.Sep.2018

!

Steps 5) to 9):

Process in ‘TAT-drafttext.fmp12’ the data from this file ‘ZOD FM-b1-FM deleted-OUT.txt’ with
the same parameters as used before (import with FM script ‘Import draft text...’ (replace all
data). But before any parsing make sure parameter ‘Text_is_only_TOC’ is set to 1 (true). In
contrast to previous examples this is now the case, we have imported only a table of content
from the ZOD’s front matter. Also parameter ‘First_page_of_draft_core’ needs to be set to 1
and parameters are to look as this:

TAT 1.0fc9, 14.Sep.2018

!

Then parse and export the TOC meta data (Cmd^6, Cmd^7). The result is a complete TOC in
‘TAT-draftTOC.fmp12’. Yet, only with titles and page numbers and line numbers are missing.
A subsequent step as described with Example 1 can add those meta data to the table
‘Table_of_Contents’ as it accumulates in ‘TAT-draftTOC.fmp12’ as pieces of the text are
processed.

Here the Log from the import and the subsequent processing (Cm^1, Cmd^6, Cmd^7):

!
!

Note, the log shown is after having executed Cmd^6 (FM script ‘Prepare for TOC Parsing’)
and Cmd^7 (FM script ‘Parser - TOC’, replace all data in ‘TAT-draftTOC.fmp12’). Here how it
looks in ‘TAT-draftTOC.fmp12’:

TAT 1.0fc9, 14.Sep.2018

!

Note, many page and line numbers will be incorrect and may give only the page where the
selected TOC entry was actually found. Thus, the test jumping (beige button at the very left)
as supported from here does not work as intended. Only processing the actual chapter will fix
this. Yet, all TOC elements such as titles, headings etc. should be fine and if a TOC would be
processed that contains page numbers (not the case for SR1.5 ZOD), the jump near those
chapters might already be possible.

TAT 1.0fc9, 14.Sep.2018

Here the example of processing also chapter 1 similar to Example 1 (above) but using for
‘First_page_of_draft_core’ value 17 (where chapter 1 starts in the entire report’s pdf):

!

The beige jump button should now work and bring you immediately to the section «1.2.3.1
Temperature stabilization pathways” starting on line 209 of page 1-4 on page 20 of the

TAT 1.0fc9, 14.Sep.2018

originally distributed ZOD.pdf (here only Skim is supported). For processing the next chapter
correctly go to the chapter’s end:

!

Page 46 (45+1) is the value to be used in field ‘First_page_of_draft_core’ (as used in Step 6)
for the next chapter 2.

In the case of the IPCC SR1.5 ZOD, it might actually be in general a good idea to first
process the data exactly as shown in the Example 3 by creating a clean data base (mode
Replace of FM script ‘Parser - TOC’) and then add for each chapter (or the entire report at
once, see next example) the additional meta data (mode Append of FM script ‘Parser -
TOC’). This use of redundancy gives an optimal check of consistency and makes it less likely
to miss out on some data. For instance, I detected with this technique that the TOC in front of
the report lists a section «3.2.4.1 Identifying hot spots», which does not exist in the chapter
itself.

!

TAT 1.0fc9, 14.Sep.2018

Example 4 - Process entire IPCC SR1.5 ZOD with front and back
matter

Example 4 is for the entire IPCC SR1.5 ZOD report wide and quite elegant. The procedure
is basically the same as the one given for above examples. Yet, the entire report can be
imported in one go and then processed in three substeps to accomplish the same and more
as if you would execute first Example 3, then Examples 1 and 2. Here the steps with their
slight variations to what was previously described:

Step 1): Use method b9) to obtain the first text file using now the large ZOD.pdf as obtained
from TSU (in this release nearby):

! ‘A-ZOD-b9.txt’

Step 2): You can use the same file as used for Example 1.

!

TAT 1.0fc9, 14.Sep.2018

Note that the value for parameter REMOVETABFIGFROMNR is quite critical now. The value
is the line where the core of the draft starts, i.e. the first record beyond the front matter. This
line is highlighted in this snapshot (made with shareware editor AlphaX) and is the first
header on page 1 of chapter 1:

!

The editor tells me the line number (left corner). In case you have no such tool available, the
following Unix command allows you also to easily determine the wanted line number:

!cat "A-ZOD-b9.txt" | massageDraft.sh | cat -n > a.txt ; open a.txt

!

Once you know the line, you can safely discard the file ‘a.txt’.

Why is it important to determine this value? First remember, under Example 3 you had to
prepare the front matter manually. Now, we can avoid this. Secondly note, by default
parameter ‘REMOVETABFIGFROMNR’ is set to the value 1 and therefore the entire file is

TAT 1.0fc9, 14.Sep.2018

involved in the processing as done by rmFigures.awk and rmTables.awk, two important awk
scripts that are normally called when using fixDraft.sh (Step 3). This would corrupt the table
of contents (TOC) in the beginning of file ZOD.pdf, i.e. in the front matter (FM), whenever it
lists a Figure or Table or Box Figure or Box Table matching the expected format. Calling
fixDraft.sh with the options -g and -t would of course suppress the call to those two utilities
and therefore avoid the corruption of the TOC in the FM. Yet, we need those utilities to do
their processing later in the draft, or we will have hundreds of extra lines of text as resulting
from figure legends or text contained in table cells (see e.g. Step 4 under Example 2). Such
lines are likely to interfere with the subsequent parsing. To prevent this corruption, yet be able
to parse the entire file, the value of 496 for parameter ‘REMOVETABFIGFROMNR’ tells TAT
to exclude all lines before line 496 from the full processing as done by fixDraft.sh, in
particular to exclude all those lines before line 496 from any processing by rmFigures.awk
and rmTables.awk. This helps later for Substep A (see below), which can then parse the
TOC as contained in the FM. Note, if the FM would have line numbers like the rest of the
ZOD, this would all be no issue. In general line numbers do prevent rmFigures.awk and
rmTables.awk from doing anything. But this was not the case for the ZOD of the IPCC SR1.5
and lines without a line number are easily mistaken by rmFigures.awk and rmTables.awk to
be table or figure lines that need to be removed.

Step 3): The file needs some editing, mostly since authors have introduced several typos
that impeded complete processing. My analysis of the ZOD showed the following issues are
present in the ZOD that matter for TAT:

- In Ch3: ‘Box 1, Figure 1:’ -> ‘Box 3.1, Figure 1:’
- In Ch3: ‘Box 3, Table 1:’ -> ‘Box 3.3, Table 1:’
- In Ch2: Footnote on p. 2-15, after line 666 is swallowed by rmFigures.awk (fixDraft.sh -z,
without option -g) unless protected by token ‘FOOTNOTE ‘.
- In Ch5: Footnote 1, at the bottom page 5-7, between lines 361 and 362, is not recognized
as footnote, i.e. there is no blank between the footnote number and the footnote text ‘1To
achieve the Paris climate agreement’
- In back matter: ‘Figure 2.10: a ’ -> ‘Figure 2.10a: ’
- In back matter: ‘Figure 2.10b’ -> ‘Figure 2.10b:’
- In back matter: ‘Figure 2.10c’ -> ‘Figure 2.10c:’
- In back matter: ‘Figure 2.10d’ -> ‘Figure 2.10d:’
- In back matter: ‘Figure 2.10e’ -> ‘Figure 2.10e:’
- In back matter: ‘Figure 2.10f’ -> ‘Figure 2.10f:’
- In back matter: ‘Figure 2.10g’ -> ‘Figure 2.10g:’
- In back matter: ‘Figure 2.10h’ -> ‘Figure 2.10h:’
- In back matter: ‘Figure 2.11: (a) Figure idea’ -> ‘Figure 2.11a: Figure idea’
- In back matter: ‘Figure 2.11b – Figure ideas and concepts’ -> ‘Figure 2.11b: – Figure ideas
and concepts’
- In back matter: ‘BOX 5.2, Figure 1:’ -> ‘Box 5.2, Figure 1:’

Note for the last edit, BOX’ is not the same as ‘Box’ and not recognized by TAT until exactly
written as specified. As of version 1.0b2 TAT offers you another technique to make the
necessary edits. Before executing fixDraft.sh create a little text file to do the edits for you.
This may be particularly handy if you suspect to stumble over further typos by the authors.
Instead of making these edits by hand, simply create a little shell script named

! ‘fixTypos.sh’

TAT 1.0fc9, 14.Sep.2018

For this example it looks like this using simple sed commands:

!
Make it executable (e.g. chmod 777) and the shell script ‘fixDraft.sh’ will notice the presence
of this script and execute it automatically. The result is that you should get the wanted input
for ‘TAT-drafttext.fmp12’ in one simple go. Of course if you prefer to do it manually, you can
also do it in the manner as described above for Example 2 and have the working directory
without a file ‘fixTypos.sh’. However, in general, it is quite handy to have such a file present to
overcome all remaining issues with a specific file. Moreoever, since some features of
fixDraft.sh can conflict with each other, e.g. removing graph lines (default, suppressed with
option -g) can occasionally remove a footnote or difficult to remove junk text lines are
interpreted as footnotes (default, suppress recognition of footnotes with option -n) etc., this
file can help to deal with all these problems elegantly and in a reversible manner while
optimizing the outcome, since the original file ‘A-ZOD-b9.txt’ is always left untouched.

For this example using ‘fixTypos.sh’ as shown above the following command does all in one
simple go:

! fixDraft.sh -z -f "A-ZOD-b9.txt" ; open "A-ZOD-b9-OUT.txt"

Above commands should generate the wanted output, and allow you to inspect its quality
thanks to the additional ‘open’ command.

Step 4): Iterations repeating Step 3 have identified the need for above fixTypos.sh script.
However, not all typos show up immediately, i.e. from a mere inspection of the output of
fixDraft.sh as done in previous examples under Step 4). Some of above typos show only up
later and the reasons will be discussed below (under Step 8).

TAT 1.0fc9, 14.Sep.2018

Step 5): As in previous Examples (replace all data) and import the entire ZOD from the file as
generated during the previous step. Make sure the parameters are all correct. Set the
parameter ‘Text_is_only_TOC’ back to 0 (false) before importing the data. Afterwards check
that the parameter ‘First_page_of_draft_core’ shows the value 17, that the record to parse
from is 497 (‘Parse_from_RecNo’) and that the first and last chapter are 1 and 5
(‘First_chapter_in_data_base’, ‘Last_chapter_in_data_base’). If the import and subsequent
processing worked fine, parameters should look as this (the aforementioned one with a green
frame):

!

If ‘First_page_of_draft_core’ is not 17, then you need also to check the other parameters,
notably those defining the relevant tokens in parameters ‘Header_token_in_FM’,
‘Footer_token_not_FM’, and ‘Header_token’. They are used to determine the possible
presence of the so-called front matter (FM), containing perhaps a table of content or some
preamble text. Note, above values for these parameters mean that page headers from
chapters, i.e. where the core of the text starts, are expected all to contain also the word
‘Chapter’ (in the given sequence), while headers in the front matter are expected to contain
only the phrase ‘Zero Order Draft’. Thanks to these parameter values the FM script ‘Clean
import and renumber pages’ – which is called also by FM script ‘Import draft text...’ – should
be able to determine front matter and determine that the first chapter starts at page 17
(‘First_page_of_draft_core’ shows value 17). You can change values of these token
parameters and execute FM script ‘Identify front (FM) and back (BM) matter’ as many times
you want. If you forgot to reset the value of parameter ‘Text_is_onlh_TOC’ to 0 (false) from
previous example, you might also get a wrong ‘First_page_of_draft_core’. If all is correct you
should get the value 17 for ‘First_page_of_draft_core’ and the shown values for
‘Parse_from_RecNo’. If you still get other values, consult the hints on how to set parameters
as described under Example 1. It is worth ensuring all parameters are correct before
proceeding.

Steps 6 and 7): Consists of 3 substeps processing different parts of the entire draft, first the
front matter (FM), i.e. Substep A), then the chapters, i.e. Substep B), then the back matter

TAT 1.0fc9, 14.Sep.2018

(BM), i.e. Substep C). This example does it all without having to reimport different data files
in Step 6).

Substep A) Do first the same parsing as described under Example 3, i.e. parse the front
matter (FM). To accomplish this you can skip Step 6), since the value has been correctly
identified during Step 5). Simply set the parameter ‘Text_is_only_TOC’ to 1 (true). Your
parameters should look then like this:

!

Then perform Step 7) by executing FM script ‘Prepare front matter (FM) for TOC
Parsing’ (Cmd^8) instead of ‘Prepare for TOC Parsing’ (Cmd^6) followed by FM script ‘Parser
- TOC’ (Cmd^7) while allowing for replacing all data. The result should be the same as what
you would have obtained from Example 3.

Substep B): Again Step 6) can be skipped but to parse now all chapters you need to first set
the parameter ‘Text_is_only_TOC’ back to 0 (false). Your parameters should like this:

!

TAT 1.0fc9, 14.Sep.2018

Then perform Step 7) the usual way by executing FM scripts ‘Prepare for TOC
Parsing’ (Cmd^6) followed by ‘Parser - TOC’ (Cmd^7), the latter of course by appending the
data. That parsing may take quite a while, since it processes all five chapters.

Substep C): Process the back matter (BM).Accomplish this first by Step 6), i.e. by first
setting the parameter ‘First_page_of_draft_core’ to 264. Your parameters should like this:

!

Then perform Step 7) by executing the FM scripts ‘Prepare back matter (BM) for TOC
Parsing’ (Cmd^9) – not ‘Prepare for TOC Parsing’ (Cmd^6) – followed by ‘Parser -
TOC’ (Cmd^7), again of course by appending. The final log should look similar to this:

TAT 1.0fc9, 14.Sep.2018

!

Step 8): First note, the effect of Substep C) is that the page numbers, where the actual
figures can be found in the pdf, is entered in the field ‘Page_MnNo’ by overwriting the value
that resulted from Substep B). However, the page number for the chapter is left as resulting
from Substep B). This offers the advantage that you can jump to both locations, i.e. where a
figure is to be inserted into the chapter text (click on page number in column ‘Page in chap.’,
value of field ‘Page_ChNo’), as well as where the actual figure can be found and looked at
(click the usual button to the very left, or page number in column ‘Page in rep.’, i.e. the value
of field ‘Page_MnNo’).

Secondly note, the typo ‘Box 3, Figure 1’ is unlikely to be detected in Example 2, albeit it is a
similar typo as the one with ‘Box 3, Table 1’, where the authors should have written ‘Box 3.3,
Figure 1’ (cf. Example 2). This is difficult to detect, since this figure is simply missing when
processing only the chapter (Substep B). However, in this example where also the back
matter was parsed (Substep C), it has become easy to detect this typo. The redundancy as
contained in the back matter lets the parser enter an item for this figure, since in the back
matter the figure has been properly labelled. Therefore it was added to the TOC in ‘TAT-

TAT 1.0fc9, 14.Sep.2018

draftTOC.fmp12’, but of course without any information on where the figure should be
inserted, neither the chapter page (field ‘Page_ChNo’, first number column) nor the line
information (field ‘Line_No’, third number column). They could have retrieved only during
Substep B). The TOC looks therefore like this (note the empty first and third number
columns):

!

Only by adding the needed edit to ‘fixTypos.sh’ (see above, first edit) will this gap go away
and after repeating the entire processing (Steps 3), 5), i.e. fixDraft.sh, Cmd^1, Substep B),
i.e. Cmd^6, Cmd^7, and Substep C), i.e. Cmd^9, Cmd^7) will the TOC now also look fine for
Box 3.1, Figure 1 and all page numbers are as wanted:

!

Of course all additional parsing as described for this iteration is never done by replacing the
data but merely by adding the meta data. You can safely iterate in this manner until all results
are as desired. You need to watch out only for bad TOC entries, e.g. malformed chapter
headings that conform to the standard, but are otherwise wrong, inexistent or malformed.
Note, REtool uses a relationship where the IndexId in both tables have to match (it consists
of the Index, 2nd column, and the draft, e.g. ZOD or FOD). If an orphaned Index is in your
TOC data base in ‘TAT-draftTOC.fmp12’, e.g. because it is malformed, it will neither be
removed nor updated unless you delete it or start to accumulate TOC data again from
scratch as done in Substep A). Since parsing can be done quite efficiently, starting from
scratch by replacing all meta data first to ensure no bad records from previous processing
remain, is not such a big deal.

Step 9): Export from ‘TAT-draftTOC.fmp12’ all TOC meta data for the entire IPCC SR1.5 ZOD
to a spreadsheet (is provided nearby for comparison reasons).

!

Note, the nearby distributed FileMaker (FM) files ‘TAT-drafttext.fmp12’ and ‘TAT-draftTOC.fmp12’
contain the records and are in a state of having done Example 4.

TAT 1.0fc9, 14.Sep.2018

